These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 18239435)
1. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen. Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435 [TBL] [Abstract][Full Text] [Related]
2. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Abdel-Rahim IR; Abo-Elyousr KAM Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections. Liu HM; Guo JH; Cheng YJ; Liu P; Long CA; Deng BX Lett Appl Microbiol; 2010 Sep; 51(3):258-63. PubMed ID: 20633212 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea. Cantu D; Greve LC; Labavitch JM; Powell AL Mycol Res; 2009 Dec; 113(Pt 12):1396-403. PubMed ID: 19781643 [TBL] [Abstract][Full Text] [Related]
6. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869 [TBL] [Abstract][Full Text] [Related]
7. Phenotypical differences among B. cinerea isolates from ornamental plants. Martínez JA; Valdés R; Vicente MJ; Bañón S Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749 [TBL] [Abstract][Full Text] [Related]
8. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950 [TBL] [Abstract][Full Text] [Related]
9. Cultural methods and environmental conditions affecting gray mold and its management in lisianthus. Shpialter L; David DR; Dori I; Yermiahu U; Pivonia S; Levite R; Elad Y Phytopathology; 2009 May; 99(5):557-70. PubMed ID: 19351252 [TBL] [Abstract][Full Text] [Related]
10. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. El-Debaiky SA Microb Pathog; 2017 Dec; 113():135-143. PubMed ID: 29074431 [TBL] [Abstract][Full Text] [Related]
11. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Cheng CH; Yang CA; Peng KC Phytopathology; 2012 Nov; 102(11):1054-63. PubMed ID: 22734558 [TBL] [Abstract][Full Text] [Related]
12. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Walker AS; Gautier AL; Confais J; Martinho D; Viaud M; Le P Cheur P; Dupont J; Fournier E Phytopathology; 2011 Dec; 101(12):1433-45. PubMed ID: 21830954 [TBL] [Abstract][Full Text] [Related]
13. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Chagué V; Danit LV; Siewers V; Schulze-Gronover C; Tudzynski P; Tudzynski B; Sharon A Mol Plant Microbe Interact; 2006 Jan; 19(1):33-42. PubMed ID: 16404951 [TBL] [Abstract][Full Text] [Related]
14. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Kim JH; Lee SH; Kim CS; Lim EK; Choi KH; Kong HG; Kim DW; Lee SW; Moon BJ J Microbiol Biotechnol; 2007 Mar; 17(3):438-44. PubMed ID: 18050947 [TBL] [Abstract][Full Text] [Related]
15. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Kokkelink L; Minz A; Al-Masri M; Giesbert S; Barakat R; Sharon A; Tudzynski P Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848 [TBL] [Abstract][Full Text] [Related]
16. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea. Achbani EH; Mounir R; Jaafari S; Douira A; Benbouazza ; Jijakli MH Commun Agric Appl Biol Sci; 2005; 70(3):143-9. PubMed ID: 16637169 [TBL] [Abstract][Full Text] [Related]
17. Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. Zhang H; Wang L; Dong Y; Jiang S; Zhang H; Zheng X Int J Food Microbiol; 2008 Aug; 126(1-2):167-71. PubMed ID: 18579245 [TBL] [Abstract][Full Text] [Related]
18. Control of foliar diseases of mustard by Bacillus from reclaimed soil. Sharma N; Sharma S Microbiol Res; 2008; 163(4):408-13. PubMed ID: 16870414 [TBL] [Abstract][Full Text] [Related]
19. Necrotrophic mycoparasitism of Botrytis cinerea by cellulolytic and ligninocellulolytic Basidiomycetes. White GJ; Traquair JA Can J Microbiol; 2006 Jun; 52(6):508-18. PubMed ID: 16788718 [TBL] [Abstract][Full Text] [Related]
20. Exocyst subunit Ma Z; Chen Z; Wang W; Wang K; Zhu T J Biosci; 2020; 45():. PubMed ID: 33184241 [No Abstract] [Full Text] [Related] [Next] [New Search]