These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18239457)

  • 1. Regulation of the Rad53 protein kinase in signal amplification by oligomer assembly and disassembly.
    Jia-Lin Ma N; Stern DF
    Cell Cycle; 2008 Mar; 7(6):808-17. PubMed ID: 18239457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.
    Sweeney FD; Yang F; Chi A; Shabanowitz J; Hunt DF; Durocher D
    Curr Biol; 2005 Aug; 15(15):1364-75. PubMed ID: 16085488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1.
    Ma JL; Lee SJ; Duong JK; Stern DF
    J Biol Chem; 2006 Feb; 281(7):3954-63. PubMed ID: 16365046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.
    Schwartz MF; Duong JK; Sun Z; Morrow JS; Pradhan D; Stern DF
    Mol Cell; 2002 May; 9(5):1055-65. PubMed ID: 12049741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FHA domain-mediated DNA checkpoint regulation of Rad53.
    Schwartz MF; Lee SJ; Duong JK; Eminaga S; Stern DF
    Cell Cycle; 2003; 2(4):384-96. PubMed ID: 12851493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53.
    Usui T; Petrini JH
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2797-802. PubMed ID: 17299042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).
    Lopez-Mosqueda J; Vidanes GM; Toczyski DP
    Cell Cycle; 2010 Nov; 9(21):4266-8. PubMed ID: 20962588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Dun1 activation by Rad53 phosphorylation in Saccharomyces cerevisiae.
    Chen SH; Smolka MB; Zhou H
    J Biol Chem; 2007 Jan; 282(2):986-95. PubMed ID: 17114794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization.
    Usui T; Foster SS; Petrini JH
    Mol Cell; 2009 Jan; 33(2):147-59. PubMed ID: 19187758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
    Chen ES; Hoch NC; Wang SC; Pellicioli A; Heierhorst J; Tsai MD
    Mol Cell Proteomics; 2014 Feb; 13(2):551-65. PubMed ID: 24302356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism.
    Naiki T; Wakayama T; Nakada D; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2004 Apr; 24(8):3277-85. PubMed ID: 15060150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase.
    Kim EM; Jang YK; Park SD
    Nucleic Acids Res; 2002 Feb; 30(3):643-8. PubMed ID: 11809875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remodelling the Rad9 checkpoint complex: preparing Rad53 for action.
    van den Bosch M; Lowndes NF
    Cell Cycle; 2004 Feb; 3(2):119-22. PubMed ID: 14712069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae.
    Pike BL; Yongkiettrakul S; Tsai MD; Heierhorst J
    Mol Cell Biol; 2004 Apr; 24(7):2779-88. PubMed ID: 15024067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase.
    Bashkirov VI; Bashkirova EV; Haghnazari E; Heyer WD
    Mol Cell Biol; 2003 Feb; 23(4):1441-52. PubMed ID: 12556502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.
    Vidanes GM; Sweeney FD; Galicia S; Cheung S; Doyle JP; Durocher D; Toczyski DP
    PLoS Biol; 2010 Jan; 8(1):e1000286. PubMed ID: 20126259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location-specific functions of the two forkhead-associated domains in Rad53 checkpoint kinase signaling.
    Tam AT; Pike BL; Heierhorst J
    Biochemistry; 2008 Mar; 47(12):3912-6. PubMed ID: 18302321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse but overlapping functions of the two forkhead-associated (FHA) domains in Rad53 checkpoint kinase activation.
    Pike BL; Yongkiettrakul S; Tsai MD; Heierhorst J
    J Biol Chem; 2003 Aug; 278(33):30421-4. PubMed ID: 12805372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.