These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

868 related articles for article (PubMed ID: 18239717)

  • 1. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband All-Optical Plane-Wave Ultrasound Imaging System Based on a Fabry-Perot Scanner.
    Pham K; Noimark S; Huynh N; Zhang E; Kuklis F; Jaros J; Desjardins A; Cox B; Beard P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1007-1016. PubMed ID: 33035154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-modulated optical microscopy.
    Kothapalli SR; Wang LV
    J Biomed Opt; 2008; 13(5):054046. PubMed ID: 19021426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional photoacoustic imaging using fiber-based line detectors.
    Grün H; Berer T; Burgholzer P; Nuster R; Paltauf G
    J Biomed Opt; 2010; 15(2):021306. PubMed ID: 20459228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin polymer etalon arrays for high-resolution photoacoustic imaging.
    Hou Y; Huang SW; Ashkenazi S; Witte R; O'Donnell M
    J Biomed Opt; 2008; 13(6):064033. PubMed ID: 19123679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array.
    Vaithilingam S; Ma TJ; Furukawa Y; Wygant IO; Zhuang X; De La Zerda A; Oralkan O; Kamaya A; Gambhir SS; Jeffrey RB; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2411-9. PubMed ID: 19942528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy.
    Zhang EZ; Laufer JG; Pedley RB; Beard PC
    Phys Med Biol; 2009 Feb; 54(4):1035-46. PubMed ID: 19168938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer microring resonators for high-sensitivity and wideband photoacoustic imaging.
    Chen SL; Huang SW; Ling T; Ashkenazi S; Guo LJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2482-91. PubMed ID: 19942534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency optoacoustic microscopy.
    Bost W; Stracke F; Weiss EC; Narasimhan S; Kolios MC; Lemor R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5883-6. PubMed ID: 19964880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging.
    Allen TJ; Beard PC
    Opt Lett; 2006 Dec; 31(23):3462-4. PubMed ID: 17099750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.
    Cox BT; Beard PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):394-404. PubMed ID: 17328336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor.
    Zhang E; Beard P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jul; 53(7):1330-8. PubMed ID: 16889340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology.
    Wei Y; Tang Z; Zhang H; He Y; Liu H
    Opt Express; 2008 Apr; 16(8):5314-9. PubMed ID: 18542633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array.
    Song L; Maslov K; Bitton R; Shung KK; Wang LV
    J Biomed Opt; 2008; 13(5):054028. PubMed ID: 19021408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution ultrasound-modulated optical tomography in biological tissues.
    Sakadzić S; Wang LV
    Opt Lett; 2004 Dec; 29(23):2770-2. PubMed ID: 15605500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast three-dimensional laser scanning scheme using acousto-optic deflectors.
    Reddy GD; Saggau P
    J Biomed Opt; 2005; 10(6):064038. PubMed ID: 16409103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner.
    Laufer J; Zhang E; Raivich G; Beard P
    Appl Opt; 2009 Apr; 48(10):D299-306. PubMed ID: 19340121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-dimensional photoacoustic imaging of moving targets.
    Ephrat P; Roumeliotis M; Prato FS; Carson JJ
    Opt Express; 2008 Dec; 16(26):21570-81. PubMed ID: 19104588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.