These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18239935)

  • 21. Effects of surgery and other experimental factors on the evaluation of middle ear function in gekkonoid lizards.
    Werner YL; Igić PG; Saunders JC
    Hear Res; 2001 Oct; 160(1-2):22-30. PubMed ID: 11591487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.
    Womack MC; Christensen-Dalsgaard J; Hoke KL
    J Exp Biol; 2016 Oct; 219(Pt 20):3246-3252. PubMed ID: 27520654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The development of the middle ear in neonatal chinchillas II. Two weeks to adulthood.
    Hsu RW; Margolis RH; Schachern PA; Javel E
    Acta Otolaryngol; 2001 Sep; 121(6):679-88. PubMed ID: 11678166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical model of internally coupled ears.
    Vossen C; Christensen-Dalsgaard J; van Hemmen JL
    J Acoust Soc Am; 2010 Aug; 128(2):909-18. PubMed ID: 20707461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone conduction hearing in the Guinea pig and the effect of artificially induced middle ear lesions.
    Zhao M; Fridberger A; Stenfelt S
    Hear Res; 2019 Aug; 379():21-30. PubMed ID: 31039489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders.
    Capshaw G; Soares D; Christensen-Dalsgaard J; Carr CE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33161383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of hearing loss in perforations of the tympanic membrane.
    Mehta RP; Rosowski JJ; Voss SE; O'Neil E; Merchant SN
    Otol Neurotol; 2006 Feb; 27(2):136-43. PubMed ID: 16436981
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards.
    Bergevin C
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):203-17. PubMed ID: 21136278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammalian ear specializations in arid habitats: structural and functional evidence from sand cat (Felis margarita).
    Huang GT; Rosowski JJ; Ravicz ME; Peake WT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):663-81. PubMed ID: 12397438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Barn owls have ageless ears.
    Krumm B; Klump G; Köppl C; Langemann U
    Proc Biol Sci; 2017 Sep; 284(1863):. PubMed ID: 28931742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model for signal transmission in an ear having hair cells with free-standing stereocilia. I. Empirical basis for model structure.
    Weiss TF; Peake WT; Rosowski JJ
    Hear Res; 1985; 20(2):131-8. PubMed ID: 4086380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals.
    Müller M; Smolders JW; Ding-Pfennigdorff D; Klinke R
    Hear Res; 1996 Dec; 102(1-2):133-54. PubMed ID: 8951458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outer- and middle-ear contributions to presbycusis in the Brown Norway rat.
    Gratton MA; Bateman K; Cannuscio JF; Saunders JC
    Audiol Neurootol; 2008; 13(1):37-52. PubMed ID: 17715469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of static middle ear pressures on the hearing threshold.
    Erlandsson B; Håkanson H; Ivarsson A; Nilsson P
    Acta Otolaryngol; 1980; 90(5-6):324-31. PubMed ID: 7211326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How does the sound pressure generated by circumaural, supra-aural, and insert earphones differ for adult and infant ears?
    Voss SE; Herrmann BS
    Ear Hear; 2005 Dec; 26(6):636-50. PubMed ID: 16377999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of contralateral noise on the measurement of auditory threshold.
    Kawase T; Ogura M; Sato T; Kobayashi T; Suzuki Y
    Tohoku J Exp Med; 2003 Jul; 200(3):129-35. PubMed ID: 14521255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of a sensory novelty: tympanic ears and the associated neural processing.
    Christensen-Dalsgaard J; Carr CE
    Brain Res Bull; 2008 Mar; 75(2-4):365-70. PubMed ID: 18331899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.