These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 18240277)
1. In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine. Hou Q; Chau DY; Pratoomsoot C; Tighe PJ; Dua HS; Shakesheff KM; Rose FR J Pharm Sci; 2008 Sep; 97(9):3972-80. PubMed ID: 18240277 [TBL] [Abstract][Full Text] [Related]
2. Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro. Qiao M; Chen D; Ma X; Hu H Pharmazie; 2006 Mar; 61(3):199-202. PubMed ID: 16599259 [TBL] [Abstract][Full Text] [Related]
3. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819 [TBL] [Abstract][Full Text] [Related]
4. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Qiao M; Chen D; Ma X; Liu Y Int J Pharm; 2005 Apr; 294(1-2):103-12. PubMed ID: 15814234 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable and thermoreversible hydrogels of poly(ethylene glycol)-poly(epsilon-caprolactone-co-glycolide)-poly(ethylene glycol) aqueous solutions. Jiang Z; Hao J; You Y; Liu Y; Wang Z; Deng X J Biomed Mater Res A; 2008 Oct; 87(1):45-51. PubMed ID: 18080306 [TBL] [Abstract][Full Text] [Related]
6. Thermosensitive PEG-PCL-PEG hydrogel controlled drug delivery system: sol-gel-sol transition and in vitro drug release study. Gong CY; Dong PW; Shi S; Fu SZ; Yang JL; Guo G; Zhao X; Wei YQ; Qian ZY J Pharm Sci; 2009 Oct; 98(10):3707-17. PubMed ID: 19189419 [TBL] [Abstract][Full Text] [Related]
7. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers. Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354 [TBL] [Abstract][Full Text] [Related]
8. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Alexander A; Ajazuddin ; Khan J; Saraf S; Saraf S Eur J Pharm Biopharm; 2014 Nov; 88(3):575-85. PubMed ID: 25092423 [TBL] [Abstract][Full Text] [Related]
9. Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D,L-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Yang H; Kao WJ Pharm Res; 2006 Jan; 23(1):205-14. PubMed ID: 16270162 [TBL] [Abstract][Full Text] [Related]
10. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Yu L; Zhang Z; Zhang H; Ding J Biomacromolecules; 2010 Aug; 11(8):2169-78. PubMed ID: 20690723 [TBL] [Abstract][Full Text] [Related]
11. Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. Hedberg EL; Shih CK; Solchaga LA; Caplan AI; Mikos AG J Control Release; 2004 Nov; 100(2):257-66. PubMed ID: 15544873 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels. Hiemstra C; Zhong Z; Van Tomme SR; van Steenbergen MJ; Jacobs JJ; Otter WD; Hennink WE; Feijen J J Control Release; 2007 Jun; 119(3):320-7. PubMed ID: 17475360 [TBL] [Abstract][Full Text] [Related]
13. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. Mishra GP; Kinser R; Wierzbicki IH; Alany RG; Alani AW Eur J Pharm Biopharm; 2014 Oct; 88(2):397-405. PubMed ID: 24931340 [TBL] [Abstract][Full Text] [Related]
14. Particle assemblies: toward new tools for regenerative medicine. Roux R; Ladavière C; Montembault A; Delair T Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):997-1007. PubMed ID: 23827536 [TBL] [Abstract][Full Text] [Related]
15. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Lin G; Cosimbescu L; Karin NJ; Tarasevich BJ Biomed Mater; 2012 Apr; 7(2):024107. PubMed ID: 22456931 [TBL] [Abstract][Full Text] [Related]
16. Studies of in situ-forming hydrogels by blending PLA-PEG-PLA copolymer with silk fibroin solution. Zhong T; Deng C; Gao Y; Chen M; Zuo B J Biomed Mater Res A; 2012 Aug; 100(8):1983-9. PubMed ID: 22566401 [TBL] [Abstract][Full Text] [Related]
17. In vitro characterization of vascular endothelial growth factor and dexamethasone releasing hydrogels for implantable probe coatings. Norton LW; Tegnell E; Toporek SS; Reichert WM Biomaterials; 2005 Jun; 26(16):3285-97. PubMed ID: 15603824 [TBL] [Abstract][Full Text] [Related]
18. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Yu L; Zhang Z; Zhang H; Ding J Biomacromolecules; 2009 Jun; 10(6):1547-53. PubMed ID: 19385649 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Gong C; Shi S; Wu L; Gou M; Yin Q; Guo Q; Dong P; Zhang F; Luo F; Zhao X; Wei Y; Qian Z Acta Biomater; 2009 Nov; 5(9):3358-70. PubMed ID: 19470411 [TBL] [Abstract][Full Text] [Related]
20. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Chung YM; Simmons KL; Gutowska A; Jeong B Biomacromolecules; 2002; 3(3):511-6. PubMed ID: 12005522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]