These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18240569)

  • 1. [Prothyomosin alpha interaction with KEAP1 doesn't lead to prothymosin alpha ubiquination and degradation].
    Mel'nikov SV; Evstaf'eva AG; Vartapetian AB
    Mol Biol (Mosk); 2007; 41(5):868-75. PubMed ID: 18240569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy complex formation between the intrinsically disordered prothymosin α and the Kelch domain of Keap1 involved in the oxidative stress response.
    Khan H; Cino EA; Brickenden A; Fan J; Yang D; Choy WY
    J Mol Biol; 2013 Mar; 425(6):1011-27. PubMed ID: 23318954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prothymosin α plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms.
    Ueda H; Matsunaga H; Halder SK
    Ann N Y Acad Sci; 2012 Oct; 1269():34-43. PubMed ID: 23045968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes.
    Karapetian RN; Evstafieva AG; Abaeva IS; Chichkova NV; Filonov GS; Rubtsov YP; Sukhacheva EA; Melnikov SV; Schneider U; Wanker EE; Vartapetian AB
    Mol Cell Biol; 2005 Feb; 25(3):1089-99. PubMed ID: 15657435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis.
    Stępkowski TM; Kruszewski MK
    Free Radic Biol Med; 2011 May; 50(9):1186-95. PubMed ID: 21295136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prothymosin-alpha mediates nuclear import of the INrf2/Cul3 Rbx1 complex to degrade nuclear Nrf2.
    Niture SK; Jaiswal AK
    J Biol Chem; 2009 May; 284(20):13856-13868. PubMed ID: 19279002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of prothymosin alpha and its mutants on activity of the p53 tumor suppressor].
    Zakharova NI; Sokolov VV; Rud'ko VV; Mel'nikov SV; Vartapetian AB; Evstaf'eva AG
    Mol Biol (Mosk); 2008; 42(4):673-84. PubMed ID: 18856068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1.
    Khan H; Killoran RC; Brickenden A; Fan J; Yang D; Choy WY
    Biochem J; 2015 Apr; 467(1):141-51. PubMed ID: 25582950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.
    Cino EA; Wong-ekkabut J; Karttunen M; Choy WY
    PLoS One; 2011; 6(11):e27371. PubMed ID: 22125611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA-200a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis.
    Yang JJ; Tao H; Hu W; Liu LP; Shi KH; Deng ZY; Li J
    Cell Signal; 2014 Nov; 26(11):2381-9. PubMed ID: 25049078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Keap1-Nrf2-antioxidant response element pathway: a review of its regulation by melatonin and the proteasome.
    Vriend J; Reiter RJ
    Mol Cell Endocrinol; 2015 Feb; 401():213-20. PubMed ID: 25528518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural analysis of the complex of Keap1 with a prothymosin alpha peptide.
    Padmanabhan B; Nakamura Y; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Apr; 64(Pt 4):233-8. PubMed ID: 18391415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin.
    Tanigawa S; Fujii M; Hou DX
    Free Radic Biol Med; 2007 Jun; 42(11):1690-703. PubMed ID: 17462537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.