These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 182408)

  • 61. Hexokinase bound to rat brain mitochondria uses externally added ATP more efficiently than internally generated ATP.
    Kabir F; Nelson BD
    Biochim Biophys Acta; 1991 Mar; 1057(1):147-50. PubMed ID: 2009276
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pig red blood cell hexokinase: regulatory characteristics and possible physiological role.
    Magnani M; Stocchi V; Serafini N; Piatti E; Dachà M; Fornaini G
    Arch Biochem Biophys; 1983 Oct; 226(1):377-87. PubMed ID: 6605723
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Site specific antibodies directed to the ATP binding region of some kinases.
    Katiyar SS; Srivastava A
    Biochem Int; 1989 Dec; 19(6):1387-93. PubMed ID: 2561451
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Glucose binding isotope effects in the ternary complex of brain hexokinase demonstrate partial relief of ground-state destabilization.
    Lewis BE; Schramm VL
    J Am Chem Soc; 2003 Apr; 125(16):4672-3. PubMed ID: 12696861
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effect of structural modifications of ATP on the yeast-hexokinase reaction.
    Hohnadel DC; Cooper C
    Eur J Biochem; 1972 Nov; 31(1):180-5. PubMed ID: 4565520
    [No Abstract]   [Full Text] [Related]  

  • 66. Inhibition of nitrobenzylthioinosine-sensitive adenosine transport by elevated D-glucose involves activation of P2Y2 purinoceptors in human umbilical vein endothelial cells.
    Parodi J; Flores C; Aguayo C; Rudolph MI; Casanello P; Sobrevia L
    Circ Res; 2002 Mar; 90(5):570-7. PubMed ID: 11909821
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of isomers of monoamminechromium-ATP and their use in mapping enzyme active sites.
    Rawlings J; Speckhard DC; Cleland WW
    Biochemistry; 1993 Oct; 32(41):11204-10. PubMed ID: 8218184
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interaction of metal(III)-adenosine 5'-triphosphate complexes with yeast hexokinase.
    Viola RE; Morrison JF; Cleland WW
    Biochemistry; 1980 Jul; 19(14):3131-7. PubMed ID: 6996699
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The effect of the sesquiterpene lactones from Geigeria on glycolytic enzymes.
    Gaspar AR; Potgieter DJ; Vermeulen NM
    Biochem Pharmacol; 1986 Feb; 35(3):493-7. PubMed ID: 2936349
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Glucose 6-phosphate and fructose 1,6-bisphosphate can be used as ATP-regenerating systems by cerebellum Ca2+-transport ATPase.
    Ramos RC; de Meis L
    J Neurochem; 1999 Jan; 72(1):81-6. PubMed ID: 9886057
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adenosine di-, tri- and tetraphosphopyridoxals modify the same lysyl residue at the ATP-binding site in adenylate kinase.
    Yagami T; Tagaya M; Fukui T
    FEBS Lett; 1988 Mar; 229(2):261-4. PubMed ID: 2831094
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Magnetic resonance studies on the interaction of metal-ion and nucleotide ligands with brain hexokinase.
    Jarori GK; Mehta A; Kasturi SR; Kenkare UW
    Eur J Biochem; 1984 Sep; 143(3):669-76. PubMed ID: 6090139
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stereochemical course of phosphokinases. The use of adenosine [gamma-(S)-16O,17O,18O]triphosphate and the mechanistic consequences for the reactions catalyzed by glycerol kinase, hexokinase, pyruvate kinase, and acetate kinase.
    Blättler WA; Knowles JR
    Biochemistry; 1979 Sep; 18(18):3927-33. PubMed ID: 226119
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Kinetic studies on the inhibition of glycolytic kinases of human erythrocytes by 2,3-diphosphoglyceric acid.
    Ponce J; Roth S; Harkness DR
    Biochim Biophys Acta; 1971 Oct; 250(1):63-74. PubMed ID: 4258865
    [No Abstract]   [Full Text] [Related]  

  • 76. Properties and kinetics and purified brain hexokinase.
    Joshi MD; Jagannathan V
    Arch Biochem Biophys; 1968 May; 125(2):460-7. PubMed ID: 5656801
    [No Abstract]   [Full Text] [Related]  

  • 77. Adenosine 5'-triphosphate recycling in an enzyme reactor based on aqueous two-phase systems.
    Suzuki H; Yamazaki Y
    Methods Enzymol; 1987; 136():45-55. PubMed ID: 2446105
    [No Abstract]   [Full Text] [Related]  

  • 78. Brain microvessel hexokinase: kinetic properties.
    Djuricić BM; Mrsulja BB
    Experientia; 1979 Feb; 35(2):169-71. PubMed ID: 33823
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Determination of the equilibrium of the hexokinase reaction and the free energy of hydrolysis of adenosine triphosphate.
    BOYER PD; ROBBINS EA
    J Biol Chem; 1957 Jan; 224(1):121-35. PubMed ID: 13398392
    [No Abstract]   [Full Text] [Related]  

  • 80. 5-Keto-D-fructose. V. Phosphorylation by yeast hexokinase.
    Avigad G; Englard S
    J Biol Chem; 1968 Apr; 243(7):1511-3. PubMed ID: 4384783
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.