BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 18241201)

  • 41. Activation of human biliverdin-IXα reductase by urea: generation of kinetically distinct forms during the unfolding pathway.
    Franklin E; Mantle T; Dunne A
    Biochim Biophys Acta; 2013 Dec; 1834(12):2573-8. PubMed ID: 24060811
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structures of the dI2dIII1 complex of proton-translocating transhydrogenase with bound, inactive analogues of NADH and NADPH reveal active site geometries.
    Bhakta T; Whitehead SJ; Snaith JS; Dafforn TR; Wilkie J; Rajesh S; White SA; Jackson JB
    Biochemistry; 2007 Mar; 46(11):3304-18. PubMed ID: 17323922
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biliverdin reductase: substrate specificity and kinetics.
    Frydman RB; Tomaro ML; Rosenfeld J; Awruch J; Sambrotta L; Valasinas A; Frydman B
    Biochim Biophys Acta; 1987 Dec; 916(3):500-11. PubMed ID: 3689807
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biliverdin reductase from the liver of Atlantic salmon (Salmo salar).
    Xu YQ; Ding ZK
    Biochemistry (Mosc); 2003 Jun; 68(6):639-43. PubMed ID: 12943508
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational enzymology: insight into biological catalysts from modelling.
    van der Kamp MW; Mulholland AJ
    Nat Prod Rep; 2008 Dec; 25(6):1001-14. PubMed ID: 19030602
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Homology modelling of human DHCR24 (seladin-1) and analysis of its binding properties through molecular docking and dynamics simulations.
    Pedretti A; Bocci E; Maggi R; Vistoli G
    Steroids; 2008 Aug; 73(7):708-19. PubMed ID: 18394665
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanism of the Morita-Baylis-Hillman reaction: a computational investigation.
    Robiette R; Aggarwal VK; Harvey JN
    J Am Chem Soc; 2007 Dec; 129(50):15513-25. PubMed ID: 18041831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Old biliverdin reductase: links to insulin resistance and may be a novel therapeutic target.
    Wu B; Liu X; Shen J
    Med Hypotheses; 2008; 71(1):73-6. PubMed ID: 18395354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The reaction mechanism of bovine kidney biliverdin reductase.
    Rigney E; Mantle TJ
    Biochim Biophys Acta; 1988 Nov; 957(2):237-42. PubMed ID: 3191141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A theoretical study of the catalytic mechanism of formate dehydrogenase.
    Castillo R; Oliva M; Martí S; Moliner V
    J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The specificity of biliverdin reductase. A study with different biliverdin types.
    Tomaro ML; Frydman RB; Awruch J; Valasinas A; Frydman B; Pandey RK; Smith KM
    Biochim Biophys Acta; 1984 Dec; 791(3):350-6. PubMed ID: 6518163
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A QM/MM free energy study of the oxidation mechanism of dihydroorotate dehydrogenase (class 1A) from Lactococcus lactis.
    Silva JR; Roitberg AE; Alves CN
    J Phys Chem B; 2015 Jan; 119(4):1468-73. PubMed ID: 25564307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Detection of biliverdin reductase activity of Schistosoma japonicum].
    Wen-qi L; Yong-long L
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2004 Apr; 22(2):106-8. PubMed ID: 15281457
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase.
    Ceh K; Demmer U; Warkentin E; Moll J; Thauer RK; Shima S; Ermler U
    Biochemistry; 2009 Oct; 48(42):10098-105. PubMed ID: 19761261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure of the biliverdin radical intermediate in phycocyanobilin:ferredoxin oxidoreductase identified by high-field EPR and DFT.
    Stoll S; Gunn A; Brynda M; Sughrue W; Kohler AC; Ozarowski A; Fisher AJ; Lagarias JC; Britt RD
    J Am Chem Soc; 2009 Feb; 131(5):1986-95. PubMed ID: 19159240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis.
    Liu Y; Liu J; Tetzlaff W; Paty DW; Cynader MS
    Free Radic Biol Med; 2006 Mar; 40(6):960-7. PubMed ID: 16540391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induced-fitting and electrostatic potential change of PcyA upon substrate binding demonstrated by the crystal structure of the substrate-free form.
    Hagiwara Y; Sugishima M; Takahashi Y; Fukuyama K
    FEBS Lett; 2006 Jul; 580(16):3823-8. PubMed ID: 16782089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.