These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 18241799)
1. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Sissler M; Lorber B; Messmer M; Schaller A; Pütz J; Florentz C Methods; 2008 Feb; 44(2):176-89. PubMed ID: 18241799 [TBL] [Abstract][Full Text] [Related]
2. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Suzuki T; Nagao A; Suzuki T Annu Rev Genet; 2011; 45():299-329. PubMed ID: 21910628 [TBL] [Abstract][Full Text] [Related]
3. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases: characterization of AspRS and TyrRS. Bonnefond L; Fender A; Rudinger-Thirion J; Giegé R; Florentz C; Sissler M Biochemistry; 2005 Mar; 44(12):4805-16. PubMed ID: 15779907 [TBL] [Abstract][Full Text] [Related]
4. Transfer RNA recognition by aminoacyl-tRNA synthetases. Beuning PJ; Musier-Forsyth K Biopolymers; 1999; 52(1):1-28. PubMed ID: 10737860 [TBL] [Abstract][Full Text] [Related]
5. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems. Fender A; Sissler M; Florentz C; Giegé R Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797 [TBL] [Abstract][Full Text] [Related]
6. A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme. Bessho Y; Hodgson DR; Suga H Nat Biotechnol; 2002 Jul; 20(7):723-8. PubMed ID: 12089559 [TBL] [Abstract][Full Text] [Related]
7. Mammalian aminoacyl-tRNA synthetases: cell signaling functions of the protein translation machinery. Brown MV; Reader JS; Tzima E Vascul Pharmacol; 2010; 52(1-2):21-6. PubMed ID: 19962454 [TBL] [Abstract][Full Text] [Related]
8. Parallel loss of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases and mtDNA-encoded tRNAs in Cnidaria. Haen KM; Pett W; Lavrov DV Mol Biol Evol; 2010 Oct; 27(10):2216-9. PubMed ID: 20439315 [TBL] [Abstract][Full Text] [Related]
9. An aminoacyl-tRNA synthetase with a defunct editing site. Lue SW; Kelley SO Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544 [TBL] [Abstract][Full Text] [Related]
10. tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations. Ryckelynck M; Giegé R; Frugier M Biochimie; 2005; 87(9-10):835-45. PubMed ID: 15925436 [TBL] [Abstract][Full Text] [Related]
11. Quality control of translation through the kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases. Shimada N; Matsuzaki K; Suzuki T; Suzuki T; Watanabe K Nucleic Acids Res Suppl; 2002; (2):79-80. PubMed ID: 12903114 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa. Pino P; Aeby E; Foth BJ; Sheiner L; Soldati T; Schneider A; Soldati-Favre D Mol Microbiol; 2010 May; 76(3):706-18. PubMed ID: 20374492 [TBL] [Abstract][Full Text] [Related]
13. Peculiar inhibition of human mitochondrial aspartyl-tRNA synthetase by adenylate analogs. Messmer M; Blais SP; Balg C; Chênevert R; Grenier L; Lagüe P; Sauter C; Sissler M; Giegé R; Lapointe J; Florentz C Biochimie; 2009 May; 91(5):596-603. PubMed ID: 19254750 [TBL] [Abstract][Full Text] [Related]
14. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Duchêne AM; Giritch A; Hoffmann B; Cognat V; Lancelin D; Peeters NM; Zaepfel M; Maréchal-Drouard L; Small ID Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16484-9. PubMed ID: 16251277 [TBL] [Abstract][Full Text] [Related]
15. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Taira H; Hohsaka T; Sisido M Nucleic Acids Res; 2006; 34(5):1653-62. PubMed ID: 16549877 [TBL] [Abstract][Full Text] [Related]
16. Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys). Helm M; Attardi G J Mol Biol; 2004 Mar; 337(3):545-60. PubMed ID: 15019776 [TBL] [Abstract][Full Text] [Related]
17. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. Schwenzer H; Zoll J; Florentz C; Sissler M Top Curr Chem; 2014; 344():247-92. PubMed ID: 23824528 [TBL] [Abstract][Full Text] [Related]
18. Genomics and the evolution of aminoacyl-tRNA synthesis. Ruan B; Ahel I; Ambrogelly A; Becker HD; Bunjun S; Feng L; Tumbula-Hansen D; Ibba M; Korencic D; Kobayashi H; Jacquin-Becker C; Mejlhede N; Min B; Raczniak G; Rinehart J; Stathopoulos C; Li T; Söll D Acta Biochim Pol; 2001; 48(2):313-21. PubMed ID: 11732603 [TBL] [Abstract][Full Text] [Related]
19. Aminoacyl-tRNA synthetases and aminoacylation of tRNA in the nucleus. Mucha P Acta Biochim Pol; 2002; 49(1):1-10. PubMed ID: 12136929 [TBL] [Abstract][Full Text] [Related]
20. Nuclear localization of aminoacyl-tRNA synthetases using single-cell capillary electrophoresis laser-induced fluorescence analysis. Gunasekera N; Lee SW; Kim S; Musier-Forsyth K; Arriaga E Anal Chem; 2004 Aug; 76(16):4741-6. PubMed ID: 15307785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]