BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18241946)

  • 1. Non-porous magnetic micro-particles: comparison to porous enzyme carriers for a diffusion rate-controlled enzymatic conversion.
    Magario I; Ma X; Neumann A; Syldatk C; Hausmann R
    J Biotechnol; 2008 Mar; 134(1-2):72-8. PubMed ID: 18241946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis and modeling of the liquid-liquid conversion of emulsified di-rhamnolipids by Naringinase from Penicillium decumbens.
    Magario I; Vielhauer O; Neumann A; Hausmann R; Syldatk C
    Biotechnol Bioeng; 2009 Jan; 102(1):9-19. PubMed ID: 18949755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kinetics model of spherical immobilized cellulase].
    Zhou JQ; Chen SG; Zhu ZK
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):799-803. PubMed ID: 16285524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of internal diffusional restrictions on the hydrolysis of penicillin G: reactor performance and specific productivity of 6-APA with immobilized penicillin acylase.
    Valencia P; Flores S; Wilson L; Illanes A
    Appl Biochem Biotechnol; 2011 Sep; 165(2):426-41. PubMed ID: 21505803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transfer studies on immobilized alpha-chymotrypsin biocatalysts prepared by deposition for use in organic medium.
    Barros RJ; Wehtje E; Adlercreutz P
    Biotechnol Bioeng; 1998 Aug; 59(3):364-73. PubMed ID: 10099348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads.
    Liu X; Lo RC; Gomez FA
    Electrophoresis; 2009 Jun; 30(12):2129-33. PubMed ID: 19582716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zeta potential measurement as a diagnostic tool in enzyme immobilisation.
    Schultz N; Metreveli G; Franzreb M; Frimmel FH; Syldatk C
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):39-44. PubMed ID: 18583108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of lipase onto micron-size magnetic beads.
    Liu X; Guan Y; Shen R; Liu H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Aug; 822(1-2):91-7. PubMed ID: 15998604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field.
    Yang K; Xu NS; Su WW
    J Biotechnol; 2010 Jul; 148(2-3):119-27. PubMed ID: 20580753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new biocatalyst: Penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties.
    Bernardino SM; Fernandes P; Fonseca LP
    Biotechnol J; 2009 May; 4(5):695-702. PubMed ID: 19418472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.
    Li SJ; Wang C; Wu ZQ; Xu JJ; Xia XH; Chen HY
    Chemistry; 2010 Sep; 16(33):10186-94. PubMed ID: 20645335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore diffusion model for a two-substrate enzymatic reaction: application to galactose oxidase immobilized on porous glass particles.
    Dahodwala SK; Humphrey AE
    Biotechnol Bioeng; 1976 Jul; 18(7):987-1000. PubMed ID: 953165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional numerical approach to investigate the substrate transport and conversion in an immobilized enzyme reactor.
    Esterl S; Ozmutlu O; Hartmann C; Delgado A
    Biotechnol Bioeng; 2003 Sep; 83(7):780-9. PubMed ID: 12889018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrophotometric assay for online measurement of the activity of lipase immobilised on micro-magnetic particles.
    Schultz N; Hobley TJ; Syldatk C
    Biotechnol Lett; 2007 Mar; 29(3):365-71. PubMed ID: 17160621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled proteolysis of normal and pathological prion protein in a microfluidic chip.
    Le Nel A; Minc N; Smadja C; Slovakova M; Bilkova Z; Peyrin JM; Viovy JL; Taverna M
    Lab Chip; 2008 Feb; 8(2):294-301. PubMed ID: 18231669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion and chemical reaction rates with nonuniform enzyme distribution: an experimental approach.
    Ladero M; Santos A; García-Ochoa F
    Biotechnol Bioeng; 2001 Feb; 72(4):458-67. PubMed ID: 11180065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved specific productivity in cephalexin synthesis by immobilized PGA in silica magnetic micro-particles.
    Bernardino SM; Fernandes P; Fonseca LP
    Biotechnol Bioeng; 2010 Dec; 107(5):753-62. PubMed ID: 20632377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of the enzymatic kinetically controlled synthesis of cephalexin: influence of diffusion limitation.
    Schroën CG; Fretz CB; DeBruin VH; Berendsen W; Moody HM; Roos EC; VanRoon JL; Kroon PJ; Strubel M; Janssen AE; Tramper J
    Biotechnol Bioeng; 2002 Nov; 80(3):331-40. PubMed ID: 12226866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residence time distribution in a packed bed bioreactor containing porous glass particles: influence of the presence of immobilized cells.
    De Backer L; Baron G
    J Chem Technol Biotechnol; 1994 Mar; 59(3):297-302. PubMed ID: 7764814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.