BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 18242055)

  • 1. Neurochemical differentiation of horizontal and amacrine cells during transformation of the sea lamprey retina.
    Abalo XM; Villar-Cerviño V; Villar-Cheda B; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Mar; 35(2):225-32. PubMed ID: 18242055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presence of glutamate, glycine, and gamma-aminobutyric acid in the retina of the larval sea lamprey: comparative immunohistochemical study of classical neurotransmitters in larval and postmetamorphic retinas.
    Villar-Cerviño V; Abalo XM; Villar-Cheda B; Meléndez-Ferro M; Pérez-Costas E; Holstein GR; Martinelli GP; Rodicio MC; Anadón R
    J Comp Neurol; 2006 Dec; 499(5):810-27. PubMed ID: 17048230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey.
    Cornide-Petronio ME; Anadón R; Barreiro-Iglesias A; Rodicio MC
    Exp Eye Res; 2015 Jun; 135():81-7. PubMed ID: 25925848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calbindin and calretinin immunoreactivity in the retina of adult and larval sea lamprey.
    Villar-Cheda B; Abalo XM; Anadón R; Rodicio MC
    Brain Res; 2006 Jan; 1068(1):118-30. PubMed ID: 16368080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developing visual system and metamorphosis in the lamprey.
    Rubinson K
    J Neurobiol; 1990 Oct; 21(7):1123-35. PubMed ID: 2258725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late proliferation and photoreceptor differentiation in the transforming lamprey retina.
    Villar-Cheda B; Abalo XM; Villar-Cerviño V; Barreiro-Iglesias A; Anadón R; Rodicio MC
    Brain Res; 2008 Mar; 1201():60-7. PubMed ID: 18295752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina.
    Kalloniatis M; Fletcher EL
    J Comp Neurol; 1993 Oct; 336(2):174-93. PubMed ID: 7902364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calretinin immunoreactivity in the developing retina of sharks: comparison with cell proliferation and GABAergic system markers.
    Ferreiro-Galve S; Rodríguez-Moldes I; Candal E
    Exp Eye Res; 2010 Sep; 91(3):378-86. PubMed ID: 20599967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina.
    Nakhai H; Sel S; Favor J; Mendoza-Torres L; Paulsen F; Duncker GI; Schmid RM
    Development; 2007 Mar; 134(6):1151-60. PubMed ID: 17301087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell differentiation in the retina of an epibenthonic teleost, the Tench (Tinca tinca, Linneo 1758).
    Bejarano-Escobar R; Blasco M; DeGrip WJ; Martín-Partido G; Francisco-Morcillo J
    Exp Eye Res; 2009 Sep; 89(3):398-415. PubMed ID: 19379735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in retinal neuronal populations in the DBA/2J mouse.
    Moon JI; Kim IB; Gwon JS; Park MH; Kang TH; Lim EJ; Choi KR; Chun MH
    Cell Tissue Res; 2005 Apr; 320(1):51-9. PubMed ID: 15714280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle-specific and cell type-specific expression of Rb in the developing human retina.
    Lee TC; Almeida D; Claros N; Abramson DH; Cobrinik D
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5590-8. PubMed ID: 17122153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical development of the guinea pig retina.
    Loeliger M; Rees S
    Exp Eye Res; 2005 Jan; 80(1):9-21. PubMed ID: 15652521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of SMI32-immunoreactive amacrine cells in the mouse retina.
    Lim EJ; Kim IB; Oh SJ; Chun MH
    Neurosci Lett; 2007 Sep; 424(3):199-202. PubMed ID: 17723270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate immunoreactivity in the tiger salamander retina differentiates between GABA-immunoreactive and glycine-immunoreactive amacrine cells.
    Yang CY
    J Neurocytol; 1996 Jul; 25(7):391-403. PubMed ID: 8866240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey.
    Barreiro-Iglesias A; Villar-Cerviño V; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Oct; 36(2):77-84. PubMed ID: 18602462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the neurokinin 1 receptor in the mouse retina.
    Catalani E; Gangitano C; Bosco L; Casini G
    Neuroscience; 2004; 128(3):519-30. PubMed ID: 15381281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Runx1 expression defines a subpopulation of displaced amacrine cells in the developing mouse retina.
    Stewart L; Potok MA; Camper SA; Stifani S
    J Neurochem; 2005 Sep; 94(6):1739-45. PubMed ID: 16026391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-aminobutyric acid-synthesizing cells in the retina of the chameleon Chamaeleo chameleon.
    Bennis M; Versaux-Botteri C; Repérant J; Armengol JA; Ward R
    J Neurosci Res; 2003 Aug; 73(3):410-5. PubMed ID: 12868074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of an aquaporin 1 immunoreactive amacrine-type cell of the mouse retina.
    Kang TH; Choi YK; Kim IB; Oh SJ; Chun MH
    J Comp Neurol; 2005 Aug; 488(3):352-67. PubMed ID: 15952169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.