These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18242746)

  • 1. A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells.
    Cockrell DC; Beare PA; Fischer ER; Howe D; Heinzen RA
    J Microbiol Methods; 2008 Mar; 72(3):321-5. PubMed ID: 18242746
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Priestley RA; Smith CB; Miller HK; Kersh GJ
    Virulence; 2021 Dec; 12(1):2461-2473. PubMed ID: 34516359
    [No Abstract]   [Full Text] [Related]  

  • 3. Transmission of
    Miller HK; Priestley RA; Kersh GJ
    Epidemiol Infect; 2020 Feb; 148():e21. PubMed ID: 32019625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of Coxiella burnetii in a Lysosome-Like Vacuole Does Not Require Lysosomal Hydrolases.
    Miller HE; Hoyt FH; Heinzen RA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405956
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens.
    Cockburn CL; Green RS; Damle SR; Martin RK; Ghahrai NN; Colonne PM; Fullerton MS; Conrad DH; Chalfant CE; Voth DE; Rucks EA; Gilk SD; Carlyon JA
    Life Sci Alliance; 2019 Apr; 2(2):. PubMed ID: 30902833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Early Stages of Human Alveolar Infection by the Q Fever Agent
    Dragan AL; Kurten RC; Voth DE
    Infect Immun; 2019 Mar; 87(5):. PubMed ID: 30833339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coxiella burnetii Blocks Intracellular Interleukin-17 Signaling in Macrophages.
    Clemente TM; Mulye M; Justis AV; Nallandhighal S; Tran TM; Gilk SD
    Infect Immun; 2018 Oct; 86(10):. PubMed ID: 30061378
    [No Abstract]   [Full Text] [Related]  

  • 8. Protein and DNA synthesis demonstrated in cell-free Ehrlichia chaffeensis organisms in axenic medium.
    Eedunuri VK; Zhang Y; Cheng C; Chen L; Liu H; Omsland A; Boyle D; Ganta RR
    Sci Rep; 2018 Jun; 8(1):9293. PubMed ID: 29915240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.
    Miller HE; Larson CL; Heinzen RA
    PLoS Pathog; 2018 Apr; 14(4):e1007005. PubMed ID: 29668757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth.
    Mulye M; Zapata B; Gilk SD
    PLoS One; 2018; 13(2):e0192215. PubMed ID: 29390006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Dextran Trafficking to the Coxiella burnetii Parasitophorous Vacuole.
    Winfree S; Gilk SD
    Curr Protoc Microbiol; 2017 Aug; 46():6C.2.1-6C.2.12. PubMed ID: 28800156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated Cholesterol in the
    Mulye M; Samanta D; Winfree S; Heinzen RA; Gilk SD
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246364
    [No Abstract]   [Full Text] [Related]  

  • 13. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages.
    Colonne PM; Winchell CG; Graham JG; Onyilagha FI; MacDonald LJ; Doeppler HR; Storz P; Kurten RC; Beare PA; Heinzen RA; Voth DE
    PLoS Pathog; 2016 Oct; 12(10):e1005915. PubMed ID: 27711191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L.
    Justis AV; Hansen B; Beare PA; King KB; Heinzen RA; Gilk SD
    Cell Microbiol; 2017 Jan; 19(1):. PubMed ID: 27345457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementation of Arginine Auxotrophy for Genetic Transformation of Coxiella burnetii by Use of a Defined Axenic Medium.
    Sandoz KM; Beare PA; Cockrell DC; Heinzen RA
    Appl Environ Microbiol; 2016 May; 82(10):3042-51. PubMed ID: 26969695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii.
    Warrier I; Hicks LD; Battisti JM; Raghavan R; Minnick MF
    PLoS One; 2014; 9(6):e100147. PubMed ID: 24949863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial colonization of host cells in the absence of cholesterol.
    Gilk SD; Cockrell DC; Luterbach C; Hansen B; Knodler LA; Ibarra JA; Steele-Mortimer O; Heinzen RA
    PLoS Pathog; 2013 Jan; 9(1):e1003107. PubMed ID: 23358892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages.
    Graham JG; MacDonald LJ; Hussain SK; Sharma UM; Kurten RC; Voth DE
    Cell Microbiol; 2013 Jun; 15(6):1012-25. PubMed ID: 23279051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coxiella burnetii alters cyclic AMP-dependent protein kinase signaling during growth in macrophages.
    MacDonald LJ; Kurten RC; Voth DE
    Infect Immun; 2012 Jun; 80(6):1980-6. PubMed ID: 22473604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium.
    Omsland A; Beare PA; Hill J; Cockrell DC; Howe D; Hansen B; Samuel JE; Heinzen RA
    Appl Environ Microbiol; 2011 Jun; 77(11):3720-5. PubMed ID: 21478315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.