BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1087 related articles for article (PubMed ID: 18242808)

  • 1. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach.
    Shanley JB; Alisa Mast M; Campbell DH; Aiken GR; Krabbenhoft DP; Hunt RJ; Walker JF; Schuster PF; Chalmers A; Aulenbach BT; Peters NE; Marvin-DiPasquale M; Clow DW; Shafer MM
    Environ Pollut; 2008 Jul; 154(1):143-54. PubMed ID: 18407389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga.
    Gorski PR; Armstrong DE; Hurley JP; Krabbenhoft DP
    Environ Pollut; 2008 Jul; 154(1):116-23. PubMed ID: 18222023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA.
    Warner KA; Bonzongo JC; Roden EE; Ward GM; Green AC; Chaubey I; Lyons WB; Arrington DA
    Sci Total Environ; 2005 Jul; 347(1-3):187-207. PubMed ID: 16084978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of mercury speciation in Minnesota rivers and streams.
    Balogh SJ; Swain EB; Nollet YH
    Environ Pollut; 2008 Jul; 154(1):3-11. PubMed ID: 18262318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury.
    Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea).
    Faganeli J; Horvat M; Covelli S; Fajon V; Logar M; Lipej L; Cermelj B
    Sci Total Environ; 2003 Mar; 304(1-3):315-26. PubMed ID: 12663193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?
    Mailman M; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):407-17. PubMed ID: 16263153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated methylmercury concentrations and loadings during flooding in Minnesota rivers.
    Balogh SJ; Swain EB; Nollet YH
    Sci Total Environ; 2006 Sep; 368(1):138-48. PubMed ID: 16257039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylmercury cycling in High Arctic wetland ponds: sources and sinks.
    Lehnherr I; St Louis VL; Emmerton CA; Barker JD; Kirk JL
    Environ Sci Technol; 2012 Oct; 46(19):10514-22. PubMed ID: 22779785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylmercury input to the Mississippi River from a large metropolitan wastewater treatment plant.
    Balogh SJ; Nollet YH
    Sci Total Environ; 2008 Nov; 406(1-2):145-53. PubMed ID: 18768210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.
    Zizek S; Horvat M; Gibicar D; Fajon V; Toman MJ
    Sci Total Environ; 2007 May; 377(2-3):407-15. PubMed ID: 17368516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 55.