These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 18242896)
41. Evaluation of pluronic nanosuspensions loading a novel insoluble anticancer drug both in vitro and in vivo. Tang XJ; Fu YH; Meng QH; Li LM; Ying XY; Han M; He QJ; Yang B; Zeng S; Hu YZ; Sheng XX; Gao JQ Int J Pharm; 2013 Nov; 456(1):243-50. PubMed ID: 23928148 [TBL] [Abstract][Full Text] [Related]
42. Nanosuspensions: a promising formulation for the new phospholipase A2 inhibitor PX-18. Pardeike J; Müller RH Int J Pharm; 2010 May; 391(1-2):322-9. PubMed ID: 20214969 [TBL] [Abstract][Full Text] [Related]
43. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Hanafy A; Spahn-Langguth H; Vergnault G; Grenier P; Tubic Grozdanis M; Lenhardt T; Langguth P Adv Drug Deliv Rev; 2007 Jul; 59(6):419-26. PubMed ID: 17566595 [TBL] [Abstract][Full Text] [Related]
44. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line. Qi X; Zhang D; Xu X; Feng F; Ren G; Chu Q; Zhang Q; Tian K Int J Nanomedicine; 2012; 7():1793-804. PubMed ID: 22619528 [TBL] [Abstract][Full Text] [Related]
45. [Preparation and characterization of oridonin submicron emulsions]. Yu L; Tong X; Tan Y Zhongguo Zhong Yao Za Zhi; 2009 Oct; 34(20):2590-3. PubMed ID: 20069898 [TBL] [Abstract][Full Text] [Related]
46. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518 [TBL] [Abstract][Full Text] [Related]
47. Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. Talekar M; Ganta S; Amiji M; Jamieson S; Kendall J; Denny WA; Garg S Int J Pharm; 2013 Jun; 450(1-2):278-89. PubMed ID: 23632263 [TBL] [Abstract][Full Text] [Related]
48. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. Ali HS; York P; Ali AM; Blagden N J Control Release; 2011 Jan; 149(2):175-81. PubMed ID: 20946923 [TBL] [Abstract][Full Text] [Related]
49. Nanostructured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Jia L; Zhang D; Li Z; Duan C; Wang Y; Feng F; Wang F; Liu Y; Zhang Q Colloids Surf B Biointerfaces; 2010 Oct; 80(2):213-8. PubMed ID: 20621458 [TBL] [Abstract][Full Text] [Related]
50. Nanocarrier improves the bioavailability, stability and antitumor activity of camptothecin. Tang XJ; Han M; Yang B; Shen YQ; He ZG; Xu DH; Gao JQ Int J Pharm; 2014 Dec; 477(1-2):536-45. PubMed ID: 25445532 [TBL] [Abstract][Full Text] [Related]
51. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Zhou X; Zhang X; Ye Y; Zhang T; Wang H; Ma Z; Wu B Int J Pharm; 2015 Feb; 479(2):391-8. PubMed ID: 25556104 [TBL] [Abstract][Full Text] [Related]
52. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. Manjunath K; Venkateswarlu V J Control Release; 2005 Oct; 107(2):215-28. PubMed ID: 16014318 [TBL] [Abstract][Full Text] [Related]
53. Fabrication of quercetin nanocrystals: comparison of different methods. Kakran M; Shegokar R; Sahoo NG; Shaal LA; Li L; Müller RH Eur J Pharm Biopharm; 2012 Jan; 80(1):113-21. PubMed ID: 21896330 [TBL] [Abstract][Full Text] [Related]
54. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Li C; Zhang D; Guo H; Hao L; Zheng D; Liu G; Shen J; Tian X; Zhang Q Int J Pharm; 2013 May; 448(1):79-86. PubMed ID: 23518367 [TBL] [Abstract][Full Text] [Related]
55. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Ganta S; Paxton JW; Baguley BC; Garg S Int J Pharm; 2009 Feb; 367(1-2):179-86. PubMed ID: 18848873 [TBL] [Abstract][Full Text] [Related]
56. [Development of Silymarin nanocrystals lyophilized power applying nanosuspension technology]. Zhao X; Wang G; Zhang B; Li H; Nie Q; Zang C; Zhao X Zhongguo Zhong Yao Za Zhi; 2009 Jun; 34(12):1503-8. PubMed ID: 19777833 [TBL] [Abstract][Full Text] [Related]
57. Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Rabinow B; Kipp J; Papadopoulos P; Wong J; Glosson J; Gass J; Sun CS; Wielgos T; White R; Cook C; Barker K; Wood K Int J Pharm; 2007 Jul; 339(1-2):251-60. PubMed ID: 17398045 [TBL] [Abstract][Full Text] [Related]
58. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Oktay AN; Karakucuk A; Ilbasmis-Tamer S; Celebi N Eur J Pharm Sci; 2018 Sep; 122():254-263. PubMed ID: 29981401 [TBL] [Abstract][Full Text] [Related]
59. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Singh SK; Srinivasan KK; Gowthamarajan K; Singare DS; Prakash D; Gaikwad NB Eur J Pharm Biopharm; 2011 Aug; 78(3):441-6. PubMed ID: 21439378 [TBL] [Abstract][Full Text] [Related]
60. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Ali HS; York P; Blagden N Int J Pharm; 2009 Jun; 375(1-2):107-13. PubMed ID: 19481696 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]