These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Rhie SK; Schreiner S; Farnham PJ Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855 [TBL] [Abstract][Full Text] [Related]
4. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Crawford GE; Davis S; Scacheri PC; Renaud G; Halawi MJ; Erdos MR; Green R; Meltzer PS; Wolfsberg TG; Collins FS Nat Methods; 2006 Jul; 3(7):503-9. PubMed ID: 16791207 [TBL] [Abstract][Full Text] [Related]
5. High-throughput mapping of the chromatin structure of human promoters. Ozsolak F; Song JS; Liu XS; Fisher DE Nat Biotechnol; 2007 Feb; 25(2):244-8. PubMed ID: 17220878 [TBL] [Abstract][Full Text] [Related]
6. Genomic profiling of HMGN1 reveals an association with chromatin at regulatory regions. Cuddapah S; Schones DE; Cui K; Roh TY; Barski A; Wei G; Rochman M; Bustin M; Zhao K Mol Cell Biol; 2011 Feb; 31(4):700-9. PubMed ID: 21173166 [TBL] [Abstract][Full Text] [Related]
7. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing. Filichkin SA; Megraw M Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584 [TBL] [Abstract][Full Text] [Related]
8. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Kodama Y; Nagaya S; Shinmyo A; Kato K Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013 [TBL] [Abstract][Full Text] [Related]
9. The accessible chromatin landscape of the human genome. Thurman RE; Rynes E; Humbert R; Vierstra J; Maurano MT; Haugen E; Sheffield NC; Stergachis AB; Wang H; Vernot B; Garg K; John S; Sandstrom R; Bates D; Boatman L; Canfield TK; Diegel M; Dunn D; Ebersol AK; Frum T; Giste E; Johnson AK; Johnson EM; Kutyavin T; Lajoie B; Lee BK; Lee K; London D; Lotakis D; Neph S; Neri F; Nguyen ED; Qu H; Reynolds AP; Roach V; Safi A; Sanchez ME; Sanyal A; Shafer A; Simon JM; Song L; Vong S; Weaver M; Yan Y; Zhang Z; Zhang Z; Lenhard B; Tewari M; Dorschner MO; Hansen RS; Navas PA; Stamatoyannopoulos G; Iyer VR; Lieb JD; Sunyaev SR; Akey JM; Sabo PJ; Kaul R; Furey TS; Dekker J; Crawford GE; Stamatoyannopoulos JA Nature; 2012 Sep; 489(7414):75-82. PubMed ID: 22955617 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators. Kwon SY; Grisan V; Jang B; Herbert J; Badenhorst P PLoS Genet; 2016 Apr; 12(4):e1005969. PubMed ID: 27046080 [TBL] [Abstract][Full Text] [Related]
11. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip). Shibata Y; Crawford GE Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. Xi H; Shulha HP; Lin JM; Vales TR; Fu Y; Bodine DM; McKay RD; Chenoweth JG; Tesar PJ; Furey TS; Ren B; Weng Z; Crawford GE PLoS Genet; 2007 Aug; 3(8):e136. PubMed ID: 17708682 [TBL] [Abstract][Full Text] [Related]
13. Mapping nucleosome positions using DNase-seq. Zhong J; Luo K; Winter PS; Crawford GE; Iversen ES; Hartemink AJ Genome Res; 2016 Mar; 26(3):351-64. PubMed ID: 26772197 [TBL] [Abstract][Full Text] [Related]
14. High-throughput localization of functional elements by quantitative chromatin profiling. Dorschner MO; Hawrylycz M; Humbert R; Wallace JC; Shafer A; Kawamoto J; Mack J; Hall R; Goldy J; Sabo PJ; Kohli A; Li Q; McArthur M; Stamatoyannopoulos JA Nat Methods; 2004 Dec; 1(3):219-25. PubMed ID: 15782197 [TBL] [Abstract][Full Text] [Related]
15. Genome-scale mapping of DNase I hypersensitivity. John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440 [TBL] [Abstract][Full Text] [Related]
16. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals. Chen A; Chen D; Chen Y Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251 [TBL] [Abstract][Full Text] [Related]
17. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Lai B; Gao W; Cui K; Xie W; Tang Q; Jin W; Hu G; Ni B; Zhao K Nature; 2018 Oct; 562(7726):281-285. PubMed ID: 30258225 [TBL] [Abstract][Full Text] [Related]
18. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. Tanaka S; Livingstone-Zatchej M; Thoma F J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475 [TBL] [Abstract][Full Text] [Related]
19. Genomic approaches for the discovery of CFTR regulatory elements. Ott CJ; Harris A Transcription; 2011; 2(1):23-7. PubMed ID: 21326906 [TBL] [Abstract][Full Text] [Related]
20. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq. Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]