BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18243121)

  • 1. A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo.
    Damgaard CK; Kahns S; Lykke-Andersen S; Nielsen AL; Jensen TH; Kjems J
    Mol Cell; 2008 Feb; 29(2):271-8. PubMed ID: 18243121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. U1 snRNA associates with TFIIH and regulates transcriptional initiation.
    Kwek KY; Murphy S; Furger A; Thomas B; O'Gorman W; Kimura H; Proudfoot NJ; Akoulitchev A
    Nat Struct Biol; 2002 Nov; 9(11):800-5. PubMed ID: 12389039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for Yin Yang-1 (YY1) in the assembly of snRNA transcription complexes.
    Emran F; Florens L; Ma B; Swanson SK; Washburn MP; Hernandez N
    Gene; 2006 Aug; 377():96-108. PubMed ID: 16769183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic splicing sites are differentially utilized in vivo.
    Haj Khelil A; Deguillien M; Morinière M; Ben Chibani J; Baklouti F
    FEBS J; 2008 Mar; 275(6):1150-62. PubMed ID: 18266765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 5' end of U2 snRNA is in close proximity to U1 and functional sites of the pre-mRNA in early spliceosomal complexes.
    Dönmez G; Hartmuth K; Kastner B; Will CL; Lührmann R
    Mol Cell; 2007 Feb; 25(3):399-411. PubMed ID: 17289587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TBP recruitment to the U1 snRNA gene promoter is disrupted by substituting a U6 proximal sequence element A (PSEA) for the U1 PSEA.
    Barakat NH; Stumph WE
    FEBS Lett; 2008 Jul; 582(16):2413-6. PubMed ID: 18547530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promoter proximal splice sites enhance transcription.
    Furger A; O'Sullivan JM; Binnie A; Lee BA; Proudfoot NJ
    Genes Dev; 2002 Nov; 16(21):2792-9. PubMed ID: 12414732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delay in synthesis of the 3' splice site promotes trans-splicing of the preceding 5' splice site.
    Takahara T; Tasic B; Maniatis T; Akanuma H; Yanagisawa S
    Mol Cell; 2005 Apr; 18(2):245-51. PubMed ID: 15837427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoration of correct splicing of thalassemic beta-globin pre-mRNA by modified U1 snRNAs.
    Gorman L; Mercatante DR; Kole R
    J Biol Chem; 2000 Nov; 275(46):35914-9. PubMed ID: 10969081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can donor splice site recognition occur without the involvement of U1 snRNP?
    Raponi M; Baralle D
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):548-50. PubMed ID: 18482005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico mutagenesis of RNA splicing in HIV-1.
    Kim H; Yin J
    Biotechnol Bioeng; 2005 Sep; 91(7):877-93. PubMed ID: 15937951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-protein complexes at the beta-globin locus.
    Mahajan MC; Weissman SM
    Brief Funct Genomic Proteomic; 2006 Mar; 5(1):62-5. PubMed ID: 16769681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different mechanisms are responsible for the low accumulation of transcripts from intronless and 3' splice site deleted genes.
    Bordonaro M; Nordstrom JL
    Biochem Biophys Res Commun; 1994 Aug; 203(1):128-32. PubMed ID: 8074646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-mRNA splicing: a complex picture in higher definition.
    Schellenberg MJ; Ritchie DB; MacMillan AM
    Trends Biochem Sci; 2008 Jun; 33(6):243-6. PubMed ID: 18472266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation.
    Lamond AI; Konarska MM; Sharp PA
    Genes Dev; 1987 Aug; 1(6):532-43. PubMed ID: 2824284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing.
    Das R; Yu J; Zhang Z; Gygi MP; Krainer AR; Gygi SP; Reed R
    Mol Cell; 2007 Jun; 26(6):867-81. PubMed ID: 17588520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro expression of beta-thalassaemia gene (IVS1-1G>C) reveals complete inactivation of the normal 5' splice site and alternative aberrant RNA splicing.
    Fujihara N; Yamauchi K; Hirota-Kawadobora M; Ishikawa S; Tozuka M; Ishii E; Katsuyama T; Okumura N; Taniguchi S
    Ann Clin Biochem; 2007 Nov; 44(Pt 6):573-8. PubMed ID: 17961316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inefficient processing impairs release of RNA from the site of transcription.
    Custódio N; Carmo-Fonseca M; Geraghty F; Pereira HS; Grosveld F; Antoniou M
    EMBO J; 1999 May; 18(10):2855-66. PubMed ID: 10329631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SKIP modifies gene expression by affecting both transcription and splicing.
    Nagai K; Yamaguchi T; Takami T; Kawasumi A; Aizawa M; Masuda N; Shimizu M; Tominaga S; Ito T; Tsukamoto T; Osumi T
    Biochem Biophys Res Commun; 2004 Apr; 316(2):512-7. PubMed ID: 15020246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HIV-1 5' LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site.
    Ashe MP; Pearson LH; Proudfoot NJ
    EMBO J; 1997 Sep; 16(18):5752-63. PubMed ID: 9312033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.