These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Cánovas D; Pérez-Martín J Fungal Genet Biol; 2009 Feb; 46(2):190-200. PubMed ID: 19038355 [TBL] [Abstract][Full Text] [Related]
23. A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. McCann MP; Snetselaar KM Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S77-87. PubMed ID: 18579420 [TBL] [Abstract][Full Text] [Related]
24. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related]
25. The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. Steinberg G; Fuchs U J Microsc; 2004 May; 214(Pt 2):114-23. PubMed ID: 15102060 [TBL] [Abstract][Full Text] [Related]
26. Ustilago maydis, the corn smut fungus, has an unusual diploid mitotic stage. Snetselaar K; McCann M Mycologia; 2017; 109(1):140-152. PubMed ID: 28402788 [TBL] [Abstract][Full Text] [Related]
27. Ustilago maydis as a Pathogen. Brefort T; Doehlemann G; Mendoza-Mendoza A; Reissmann S; Djamei A; Kahmann R Annu Rev Phytopathol; 2009; 47():423-45. PubMed ID: 19400641 [TBL] [Abstract][Full Text] [Related]
28. Endocytosis in the plant-pathogenic fungus Ustilago maydis. Fuchs U; Steinberg G Protoplasma; 2005 Oct; 226(1-2):75-80. PubMed ID: 16231103 [TBL] [Abstract][Full Text] [Related]
29. New Insights of Ustilago maydis as Yeast Model for Genetic and Biotechnological Research: A Review. Olicón-Hernández DR; Araiza-Villanueva MG; Pardo JP; Aranda E; Guerra-Sánchez G Curr Microbiol; 2019 Aug; 76(8):917-926. PubMed ID: 30689003 [TBL] [Abstract][Full Text] [Related]
30. Microtubules offset growth site from the cell centre in fission yeast. Castagnetti S; Novák B; Nurse P J Cell Sci; 2007 Jul; 120(Pt 13):2205-13. PubMed ID: 17591689 [TBL] [Abstract][Full Text] [Related]
31. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest. Castanheira S; Pérez-Martín J Plant Signal Behav; 2015; 10(4):e1001227. PubMed ID: 25876077 [TBL] [Abstract][Full Text] [Related]
32. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity. Pham CD; Yu Z; Sandrock B; Bölker M; Gold SE; Perlin MH Eukaryot Cell; 2009 Jul; 8(7):977-89. PubMed ID: 19411618 [TBL] [Abstract][Full Text] [Related]
34. Predicted elements of telomere organization and function in Ustilago maydis. Sánchez-Alonso P; Guzman P Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S54-62. PubMed ID: 18514000 [TBL] [Abstract][Full Text] [Related]
35. Tracks for traffic: microtubules in the plant pathogen Ustilago maydis. Steinberg G New Phytol; 2007; 174(4):721-733. PubMed ID: 17504456 [TBL] [Abstract][Full Text] [Related]
36. Prospects for functional genomics in Schizosaccharomyces pombe. Sunnerhagen P Curr Genet; 2002 Nov; 42(2):73-84. PubMed ID: 12478386 [TBL] [Abstract][Full Text] [Related]
39. Early studies on recombination and DNA repair in Ustilago maydis. Holliday R DNA Repair (Amst); 2004 Jun; 3(6):671-82. PubMed ID: 15135734 [TBL] [Abstract][Full Text] [Related]
40. Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi. Pérez-Martín J; Castillo-Lluva S; Sgarlata C; Flor-Parra I; Mielnichuk N; Torreblanca J; Carbó N Mol Genet Genomics; 2006 Sep; 276(3):211-29. PubMed ID: 16896795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]