These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18244096)

  • 1. Propagation and backpropagation for ultrasonic wavefront design.
    Liu DL; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):1-13. PubMed ID: 18244096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of ultrasonic wavefront distortion using backpropagation and a reference waveform method for time-shift compensation.
    Liu DL; Waag RC
    J Acoust Soc Am; 1994 Aug; 96(2 Pt 1):649-60. PubMed ID: 7930065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the angular spectrum method to calculate pressure from a spherically curved acoustic source.
    Vyas U; Christensen DA
    J Acoust Soc Am; 2011 Nov; 130(5):2687-93. PubMed ID: 22087896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of ultrasonic focus aberration and correction through human tissue.
    Tabei M; Mast TD; Waag RC
    J Acoust Soc Am; 2003 Feb; 113(2):1166-76. PubMed ID: 12597210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity.
    Cassereau D; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):579-92. PubMed ID: 18267669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and correction of ultrasonic wavefront distortion using pulse-echo data received in a two-dimensional aperture.
    Liu DD; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):473-90. PubMed ID: 18244198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propagation of a finite optical beam in an inhomogeneous medium.
    Lutomirski RF; Yura HT
    Appl Opt; 1971 Jul; 10(7):1652-8. PubMed ID: 20111181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic propagation in viscous fluid with uniform flow and a novel design methodology for ultrasonic flow meter.
    Chen Y; Huang Y; Chen X
    Ultrasonics; 2013 Feb; 53(2):595-606. PubMed ID: 23146176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An accurate analysis of the radiation characteristics of a plane piston transducer with phase apodization for focusing.
    Warriner RK; Cobbold RS
    Ultrasonics; 2013 Mar; 53(3):745-53. PubMed ID: 23218169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time reversal of ultrasonic fields. I. Basic principles.
    Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):555-66. PubMed ID: 18267667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A radial propagator for axisymmetric pressure fields.
    Pees EH
    J Acoust Soc Am; 2011 Apr; 129(4):2052-8. PubMed ID: 21476660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A relationship between the far field diffraction pattern and the axial pressure radiating from a two-dimensional aperture.
    Pees EH
    J Acoust Soc Am; 2010 Mar; 127(3):1381-90. PubMed ID: 20329838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave equation-based imaging of mode converted waves in ultrasonic NDI, with suppressed leakage from nonmode converted waves.
    Portzgen N; Gisolf D; Verschuur DJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1768-80. PubMed ID: 18986920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-window angular spectrum method for diffraction propagation in far and near field.
    Yu X; Xiahui T; Xiong QY; Hao P; Wei W
    Opt Lett; 2012 Dec; 37(23):4943-5. PubMed ID: 23202098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of velocity and attenuation of leaky waves using an ultrasonic array.
    Titov S; Maev R; Bogachenkov A
    Ultrasonics; 2006 Feb; 44(2):182-7. PubMed ID: 16376398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical comparison of ultrasonic array imaging algorithms.
    Velichko A; Wilcox PD
    J Acoust Soc Am; 2010 Apr; 127(4):2377-84. PubMed ID: 20370020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of ultrasonic wave transmission through a fluid-solid interface.
    Belgroune D; de Belleval JF; Djelouah H
    Ultrasonics; 2008 Jul; 48(3):220-30. PubMed ID: 18328524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation and compensation of ultrasonic wavefront distortion using a blind system identification method.
    Lin F; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):739-55. PubMed ID: 12075967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.