These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18244124)

  • 1. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. I. Algorithm synthesis and experimental results [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):259-70. PubMed ID: 18244124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A closed loop ML algorithm for phase aberration correction in phased array imaging systems. II. Performance analysis [Ultrasound medical imaging].
    Fortes JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):271-86. PubMed ID: 18244125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase aberration correction using near-field signal redundancy. I. Principles [Ultrasound medical imaging].
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):355-71. PubMed ID: 18244133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements.
    O'Donnell M; Flax SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):768-74. PubMed ID: 18290214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.
    Flax SW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):758-67. PubMed ID: 18290213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small element array algorithm for correcting phase aberrations using near-field signal redundancy. Part II: experimental results.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):49-57. PubMed ID: 18238516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation processing for correction of phase distortions in subaperture imaging.
    Tavh B; Karaman M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1477-88. PubMed ID: 18244344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cross algorithm for phase-aberration correction in medical ultrasound images formed with two-dimensional arrays.
    Li Y; Robinson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):588-601. PubMed ID: 18407849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation-based aberration correction in the presence of inoperable elements.
    O'Donnell M; Engeler WE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):700-7. PubMed ID: 18267685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phase aberration correction method for ultrasound imaging.
    Karaman M; Atalar A; Koymen H; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):275-82. PubMed ID: 18263182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small element array algorithm for correcting phase aberration using near-field signal redundancy. I. Principles.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):29-48. PubMed ID: 18238515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of sparse synthetic transmit aperture imaging with coded excitation and frequency division.
    Behar V; Adam D
    Ultrasonics; 2005 Dec; 43(10):777-88. PubMed ID: 16087207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting media.
    Trahey G; Zhao D; Miglin JA; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):418-27. PubMed ID: 18285059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing-error-difference calibration using reciprocal signals.
    Li Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2405-17. PubMed ID: 19049920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays.
    Seip R; Vanbaren P; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):706-13. PubMed ID: 18263259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system.
    Song H; Fraanje R; Schitter G; Kroese H; Vdovin G; Verhaegen M
    Opt Express; 2010 Nov; 18(23):24070-84. PubMed ID: 21164754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solution to the phase-diversity problem for real-time wavefront sensing.
    Mocoeur I; Mugnier LM; Cassaing F
    Opt Lett; 2009 Nov; 34(22):3487-9. PubMed ID: 19927186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VLSI circuits for adaptive digital beamforming in ultrasound imaging.
    Karaman M; Atalar A; Koymen H
    IEEE Trans Med Imaging; 1993; 12(4):711-20. PubMed ID: 18218466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase aberration correction using near-field signal redundancy. II. Experimental results.
    Li Y; Robinson D; Carpenter D
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):372-9. PubMed ID: 18244134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A speckle target adaptive imaging technique in the presence of distributed aberrations.
    Ng GC; Freiburger PD; Walker WF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):140-51. PubMed ID: 18244111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.