These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18244129)

  • 1. Hybrid multi/single layer array transducers for increased signal-to-noise ratio.
    Goldberg RL; Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):315-25. PubMed ID: 18244129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic imaging using a 5-MHz multilayer/single-layer hybrid array for increased signal-to-noise ratio.
    Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1101-19. PubMed ID: 18244304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of signal-to-noise ratio for multilayer PZT transducers.
    Goldberg RL; Smith SW
    Ultrason Imaging; 1995 Apr; 17(2):95-113. PubMed ID: 7571210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved signal-to-noise ratio in hybrid 2-D arrays: experimental confirmation.
    Emery CD; Smith SW
    Ultrason Imaging; 1997 Apr; 19(2):93-111. PubMed ID: 9381632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer piezoelectric ceramics for two-dimensional array transducers.
    Goldberg RL; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):761-71. PubMed ID: 18263264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):961-71. PubMed ID: 18238501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers part II: thick film technology.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):1005-14. PubMed ID: 12152936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-dimensional array for B-mode and volumetric imaging with multiplexed electrostrictive elements.
    Davidsen RE; Smith SW
    Ultrason Imaging; 1997 Oct; 19(4):235-50. PubMed ID: 9651952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
    Wygant IO; Jamal NS; Lee HJ; Nikoozadeh A; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2145-56. PubMed ID: 19942502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
    Wygant IO; Zhuang X; Yeh DT; Oralkan O; Sanli Ergun A; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):327-42. PubMed ID: 18334340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional arrays for medical ultrasound.
    Smith SW; Trahey GE; von Ramm OT
    Ultrason Imaging; 1992 Jul; 14(3):213-33. PubMed ID: 1448889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems.
    Bae MH; Jeong MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1510-9. PubMed ID: 18238697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element comparison of single crystal vs. multi-layer composite arrays for medical ultrasound.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):1015-20. PubMed ID: 12152937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis of a deformable array transducer.
    Ries LL; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1352-63. PubMed ID: 18244331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging using a copolymer phased array.
    Goldberg RL; Smith SW; Brown LF
    Ultrason Imaging; 1992 Jul; 14(3):234-48. PubMed ID: 1448890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
    Merks EJ; Borsboom JM; Bom N; van der Steen AF; de Jong N
    Ultrasonics; 2006 Dec; 44 Suppl 1():e705-10. PubMed ID: 16875709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.