BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18244193)

  • 1. A method for calibrating the line-focus-beam acoustic microscopy system.
    Kushibiki JI; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):421-30. PubMed ID: 18244193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy.
    Kushibiki JI; Ohashi Y; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):274-84. PubMed ID: 18238540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-accuracy standard specimens for the line-focus-beam ultrasonic material characterization system.
    Kushibiki J; Arakawa M; Okabe R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):827-35. PubMed ID: 12075976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of construction mechanism of V(z) curves obtained by line-focus-beam acoustic microscopy.
    Ono Y; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1042-50. PubMed ID: 18238639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an improved calibration method for the LFB ultrasonic material characterization system.
    Ohashi Y; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):686-94. PubMed ID: 15244282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation and selection of LiNbO(3) and LiTaO(3) substrates for SAW devices by the LFB ultrasonic material characterization system.
    Kushibiki J; Ohashi Y; Ono Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1068-76. PubMed ID: 18238642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method of determining acoustical physical constants for piezoelectric materials by line-focus-beam acoustic microscopy.
    Takanaga I; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):893-904. PubMed ID: 12152943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of transverse bulk and surface acoustic waves in LiNbO (3) variable time-delay devices.
    Thaxter JB; Carr PH; Silva JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):525-30. PubMed ID: 18290183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of elastic constants of generally anisotropic inclined lamellar structure using line-focus acoustic microscopy.
    Kim JY; Rokhlin SI
    J Acoust Soc Am; 2009 Dec; 126(6):2998-3007. PubMed ID: 20000913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microdefocusing method for measuring acoustic properties using acoustic microscope.
    Kanai H; Chubachi N; Sannomiya T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):643-52. PubMed ID: 18267676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the leaky SAW attenuation with heavy mechanical loading.
    Koskela J; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):439-49. PubMed ID: 18244195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.
    Kushibiki J; Arakawa M; Ohashi Y; Suzuki K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1627-36. PubMed ID: 16964913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.
    Aoyagi T; Nakazawa M; Tabaru M; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1761-8. PubMed ID: 19686992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the line-focus-beam ultrasonic material characterization system.
    Kushibiki J; Ono Y; Ohashi Y; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jan; 49(1):99-113. PubMed ID: 11833896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of leaky surface acoustic wave velocity of glass substrates on frequency variation of ZnO/glass SAW filters.
    Kadota M; Kitamura T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):817-22. PubMed ID: 18238483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standardized evaluation of chemical compositions of LiTaO3 single crystals for SAW devices using the LFB ultrasonic material characterization system.
    Kushibiki J; Ohashi Y; Ujiie T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):454-65. PubMed ID: 11989701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the true congruent composition for LiTaO3 single crystals using the LFB ultrasonic material characterization system.
    Kushibiki J; Ohashi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):385-92. PubMed ID: 16529113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of surface acoustic waves in (n11) GaAs-cuts.
    Zhang V; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):406-16. PubMed ID: 18244138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of glass materials by using the line-focus-beam ultrasonic-material-characterization system.
    Kushibiki J; Arakawa M; Ohashi Y; Okabe R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1152-60. PubMed ID: 16212254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.