These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18244208)

  • 1. Precise modeling of complex SAW structures using a perturbation method hybridized with a finite element analysis.
    Ballandras S; Bigler E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):567-73. PubMed ID: 18244208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of metal thickness on phase velocity and thermal sensitivity of SAW devices.
    Henry-Briot E; Ballandras S; Marianneau G; Martin G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):538-46. PubMed ID: 11370368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.
    Abdollahi A; Jiang Z; Arabshahi SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2446-55. PubMed ID: 18276536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A perturbation method for predicting the temperature and stress sensitivities of quartz vibrating structures simulated by finite-element analysis.
    Ballandras S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2086-94. PubMed ID: 17111494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAW diffraction using the thin-element decomposition method.
    Fagerholm J; Friberg AT; Huttunen J; Morgan DP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):505-14. PubMed ID: 18244148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The numerical analysis of general SAW and leaky wave devices using approximate Green's function representations.
    Peach RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2282-91. PubMed ID: 19942514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-sensitivity mapping for surface acoustic waves on quartz.
    Bigler E; Hauden D; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(1):57-62. PubMed ID: 18284950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation characteristics of surface acoustic waves in single-electron transport devices and the electrical measurement.
    Zhang CY; Gao J; Li H; Song L; Lu C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1452-9. PubMed ID: 21768029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalent networks for SAW gratings.
    Koshiba M; Mitobe S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):531-5. PubMed ID: 18290184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reduced Three Dimensional Model for SAW Sensors Using Finite Element Analysis.
    El Gowini MM; Moussa WA
    Sensors (Basel); 2009; 9(12):9945-64. PubMed ID: 22303156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient analysis tool for coupled-SAW-resonator filters.
    Scholl G; Christ A; Ruile W; Russer PH; Weigel R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):243-51. PubMed ID: 18267581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional modeling of piezoelectric materials.
    Brissaud M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2051-65. PubMed ID: 20875995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Green's function approach to the reflection behavior of SAW in layered structures.
    Weihnacht M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):72-4. PubMed ID: 18263160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric Nonlinear Model for Prediction of Frequency-Temperature Behavior of SAW Devices for Nanosensor Applications.
    Chen Z; Zhang Q; Li C; Fu S; Qiu X; Wang X; Wu H
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSBW to PSAW conversion in SAW devices using heavy mechanical loading.
    Fusero Y; Ballandras S; Desbois J; Hodé JM; Ventura P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jun; 49(6):805-14. PubMed ID: 12075973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads.
    Loveday PW
    Ultrasonics; 2009 Mar; 49(3):298-300. PubMed ID: 19108858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.