These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18244210)

  • 1. Velocity dispersion of acoustic waves in cancellous bone.
    Droin P; Berger G; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):581-92. PubMed ID: 18244210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of the Kramers-Kronig relationship for acoustic waves.
    Lee CC; Lahham M; Martin BG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(4):286-94. PubMed ID: 18285043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?
    Bauer AQ; Marutyan KR; Holland MR; Miller JG
    J Acoust Soc Am; 2007 Jul; 122(1):222-8. PubMed ID: 17614481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Verification of the Kramers-Kronig relations between ultrasonic attenuation and phase velocity in a finite spectral range for CFRP composites.
    Sokolovskaya YG; Podymova NB; Karabutov AA
    Ultrasonics; 2019 May; 95():37-44. PubMed ID: 30878705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon nanotube composites using Kramers-Kronig relations.
    Mobley J; Mack RA; Gladden JR; Mantena PR
    J Acoust Soc Am; 2009 Jul; 126(1):92-7. PubMed ID: 19603865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kramers-Kronig relations applied to finite bandwidth data from suspensions of encapsulated microbubbles.
    Mobley J; Waters KR; Hughes MS; Hall CS; Marsh JN; Brandenburger GH; Miller JG
    J Acoust Soc Am; 2000 Nov; 108(5 Pt 1):2091-106. PubMed ID: 11108346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics.
    Treeby BE; Cox BT; Zhang EZ; Patch SK; Beard PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1666-76. PubMed ID: 19686982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic broadband characterization of a viscous liquid: methods and perturbation factors.
    Ghodhbani N; Marechal P; Duflo H
    Ultrasonics; 2015 Feb; 56():308-17. PubMed ID: 25238692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic velocity dispersion in bovine cortical bone: an experimental study.
    Haïat G; Sasso M; Naili S; Matsukawa M
    J Acoust Soc Am; 2008 Sep; 124(3):1811-21. PubMed ID: 19045671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency.
    Wang Y; Challis RE; Phang AP; Unwin ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2504-13. PubMed ID: 19942536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of ultrasound attenuation and dispersion using short time Fourier transform.
    Zhao B; Basir OA; Mittal GS
    Ultrasonics; 2005 Mar; 43(5):375-81. PubMed ID: 15737388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating myocardial attenuation from M-mode ultrasonic backscatter.
    Baldwin SL; Marutyan KR; Yang M; Wallace KD; Holland MR; Miller JG
    Ultrasound Med Biol; 2005 Apr; 31(4):477-84. PubMed ID: 15831326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of diffraction effect in ultrasonic attenuation by through-transmission substitution technique.
    Xing G; Yang P; He L
    Ultrasonics; 2013 Apr; 53(4):825-30. PubMed ID: 23290825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone.
    Anderson CC; Marutyan KR; Holland MR; Wear KA; Miller JG
    J Acoust Soc Am; 2008 Sep; 124(3):1781-9. PubMed ID: 19045668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of Interaction of Ultrasound With Cancellous Bone: A Review.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):454-482. PubMed ID: 31634127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kramers-Kronig analysis of attenuation and dispersion in trabecular bone.
    Waters KR; Hoffmeister BK
    J Acoust Soc Am; 2005 Dec; 118(6):3912-20. PubMed ID: 16419833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic wave propagation in bovine cancellous bone: application of the Modified Biot-Attenborough model.
    Lee KI; Roh HS; Yoon SW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2284-93. PubMed ID: 14587625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic slow waves in air-saturated cancellous bone.
    Nicholson PH; Strelitzki R
    Ultrasonics; 1999 Sep; 37(6):445-9. PubMed ID: 10579032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.