These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18244224)

  • 1. Frequency shifts in cesium beam clocks induced by microwave leakages.
    Boussert B; Theobald G; Cerez P; de Clercq E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):728-38. PubMed ID: 18244224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency performances of a miniature optically pumped cesium beam frequency standard.
    Bousset B; Lucas-Leclin G; Hamouda F; Cerez P; Theobald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):366-71. PubMed ID: 18238433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the microwave amplitude in optically pumped cesium beam frequency standards.
    Audoin C; Hamouda F; Chassagne L; Barillet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):407-13. PubMed ID: 18238438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis tools for the accurate evaluation of a small frequency standard.
    Hamouda F; Theobald G; Cerez P; Audoin C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):449-56. PubMed ID: 18238564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A linewidth locking method to control the microwave power in optically pumped cesium-beam clocks.
    Xie W; Wang Q; He X; Xiong Z; Chen N; Fang S; Qi X; Chen X
    Rev Sci Instrum; 2020 Sep; 91(9):094708. PubMed ID: 33003804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of fluorescence light shifts in optically pumped cesium beam frequency standards.
    Hisadome K; Kihara M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):407-12. PubMed ID: 18267601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing Cavity-Pulling Shift in Ramsey-Operated Compact Clocks.
    Gozzelino M; Micalizio S; Levi F; Godone A; Calosso CE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1294-1301. PubMed ID: 29993382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical origin of the frequency shifts in cesium beam frequency standards-related environmental sensitivity.
    Audoin C; Dimarcq N; Giodano V; Viennet J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):412-21. PubMed ID: 18267651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New design for a high performance optically pumped cesium beam tube.
    Giordano V; Hamel A; Petit P; Theobald G; Dimarcq N; Cerez P; Audoin C
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):350-7. PubMed ID: 18267595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact optically pumped cesium beam atomic clock with a 5-day frequency stability of 7×10
    He X; Fang S; Yuan Z; Xie W; Chen N; Xiong Z; Wang Q; Qi X; Chen X
    Appl Opt; 2021 Dec; 60(34):10761-10765. PubMed ID: 35200944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of dynamic end-to-end cavity phase shifts in cesium-fountain frequency standards.
    Jefferts SR; Heavner TP; Donley EA; Parker TE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):652-3. PubMed ID: 15244277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1.
    Schröder R; Hübner U; Griebsch D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):383-92. PubMed ID: 12322889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements.
    Santarelli G; Governatori G; Chambon D; Lours M; Rosenbusch P; Guéna J; Chapelet F; Bize S; Tobar ME; Laurent P; Potier T; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1319-26. PubMed ID: 19574143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of a static magnetic field on the detected atomic velocity distribution in an optically pumped cesium beam frequency standard.
    Zhang J; Chen J; Wang F; Yang D; Wang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1210-3. PubMed ID: 14561038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ramsey Spectroscopy with Displaced Frequency Jumps.
    Shuker M; Pollock JW; Boudot R; Yudin VI; Taichenachev AV; Kitching J; Donley EA
    Phys Rev Lett; 2019 Mar; 122(11):113601. PubMed ID: 30951321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient response following frequency or amplitude switching in a cesium beam tube.
    Hamouda F; Audoin C; Chassagne L; Barillet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):861-6. PubMed ID: 18238489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of the beam reversal technique on compact cesium clocks: towards an improvement in accuracy.
    Chassagne L; Hamouda F; Théobald G; Cérez P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1513-6. PubMed ID: 11800112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock.
    Yang F; Wang X; Fan S; Bai Y; Shi J; Liu D; Zhang H; Guan Y; Hao Q; Ruan J; Zhang S
    Rev Sci Instrum; 2022 Apr; 93(4):044708. PubMed ID: 35489952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase and light shift determination in an optically pumped cesium beam frequency standard.
    Makdissi A; Berthet JP; de Clercq E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):461-5. PubMed ID: 18238566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks.
    Guéna J; Li R; Gibble K; Bize S; Clairon A
    Phys Rev Lett; 2011 Apr; 106(13):130801. PubMed ID: 21517369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.