These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 18244275)

  • 1. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Droit C; Martin G; Ballandras S; Friedt JM
    Rev Sci Instrum; 2010 May; 81(5):056103. PubMed ID: 20515180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.
    Friedt JM; Droit C; Ballandras S; Alzuaga S; Martin G; Sandoz P
    Rev Sci Instrum; 2012 May; 83(5):055001. PubMed ID: 22667642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-cost high-definition wireless sensor system utilizing intersymbol interference.
    Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1355-62. PubMed ID: 18244298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between BAW and SAW sensor principles.
    Benes E; Groschl M; Seifert F; Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1314-30. PubMed ID: 18244294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of wireless SAW sensors.
    Polh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and application of passive SAW radio transponders as sensors.
    Reindl L; Scholl G; Ostertag T; Scherr H; Wolff U; Schmidt F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1281-92. PubMed ID: 18244291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless demodulation system for passive surface acoustic wave torque sensor.
    Ji X; Fan Y; Qi H; Chen J; Han T; Cai P
    Rev Sci Instrum; 2014 Dec; 85(12):125001. PubMed ID: 25554317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interrogation unit for passive wireless SAW sensors based on fourier transform.
    Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.
    Huang YS; Chen YY; Wu TT
    Nanotechnology; 2010 Mar; 21(9):095503. PubMed ID: 20139488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for wideband characterization of resonator-based sensing platforms.
    Munir F; Wathen A; Hunt WD
    Rev Sci Instrum; 2011 Mar; 82(3):035119. PubMed ID: 21456800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature SAW Wireless Strain Sensor with Langasite.
    Shu L; Peng B; Yang Z; Wang R; Deng S; Liu X
    Sensors (Basel); 2015 Nov; 15(11):28531-42. PubMed ID: 26569255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-stable double SAW resonators.
    Martin G; Kunze R; Wall B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):199-207. PubMed ID: 18334325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ZnO nanorod-based SAW oscillator system for ultraviolet detection.
    Wang WS; Wu TT; Chou TH; Chen YY
    Nanotechnology; 2009 Apr; 20(13):135503. PubMed ID: 19420502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a hydrogen gas sensor using a double SAW resonator system at room temperature.
    Yunusa Z; Hamidon MN; Ismail A; Mohd Isa M; Yaacob MH; Rahmanian S; Ibrahim SA; Shabaneh AA
    Sensors (Basel); 2015 Feb; 15(3):4749-65. PubMed ID: 25730480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.