BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 18244275)

  • 1. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Droit C; Martin G; Ballandras S; Friedt JM
    Rev Sci Instrum; 2010 May; 81(5):056103. PubMed ID: 20515180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.
    Friedt JM; Droit C; Ballandras S; Alzuaga S; Martin G; Sandoz P
    Rev Sci Instrum; 2012 May; 83(5):055001. PubMed ID: 22667642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low-cost high-definition wireless sensor system utilizing intersymbol interference.
    Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1355-62. PubMed ID: 18244298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between BAW and SAW sensor principles.
    Benes E; Groschl M; Seifert F; Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1314-30. PubMed ID: 18244294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of wireless SAW sensors.
    Polh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory and application of passive SAW radio transponders as sensors.
    Reindl L; Scholl G; Ostertag T; Scherr H; Wolff U; Schmidt F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1281-92. PubMed ID: 18244291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless demodulation system for passive surface acoustic wave torque sensor.
    Ji X; Fan Y; Qi H; Chen J; Han T; Cai P
    Rev Sci Instrum; 2014 Dec; 85(12):125001. PubMed ID: 25554317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interrogation unit for passive wireless SAW sensors based on fourier transform.
    Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.
    Huang YS; Chen YY; Wu TT
    Nanotechnology; 2010 Mar; 21(9):095503. PubMed ID: 20139488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method for wideband characterization of resonator-based sensing platforms.
    Munir F; Wathen A; Hunt WD
    Rev Sci Instrum; 2011 Mar; 82(3):035119. PubMed ID: 21456800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature SAW Wireless Strain Sensor with Langasite.
    Shu L; Peng B; Yang Z; Wang R; Deng S; Liu X
    Sensors (Basel); 2015 Nov; 15(11):28531-42. PubMed ID: 26569255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-stable double SAW resonators.
    Martin G; Kunze R; Wall B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):199-207. PubMed ID: 18334325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ZnO nanorod-based SAW oscillator system for ultraviolet detection.
    Wang WS; Wu TT; Chou TH; Chen YY
    Nanotechnology; 2009 Apr; 20(13):135503. PubMed ID: 19420502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a hydrogen gas sensor using a double SAW resonator system at room temperature.
    Yunusa Z; Hamidon MN; Ismail A; Mohd Isa M; Yaacob MH; Rahmanian S; Ibrahim SA; Shabaneh AA
    Sensors (Basel); 2015 Feb; 15(3):4749-65. PubMed ID: 25730480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.