These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18244294)

  • 1. Comparison between BAW and SAW sensor principles.
    Benes E; Groschl M; Seifert F; Pohl A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1314-30. PubMed ID: 18244294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.
    Abdollahi A; Jiang Z; Arabshahi SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2446-55. PubMed ID: 18276536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A laser probe based on a Sagnac interferometer with fast mechanical scan for RF surface and bulk acoustic wave devices.
    Hashimoto KY; Kashiwa K; Wu N; Omori T; Yamaguchi M; Takano O; Meguro S; Akahane K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):187-94. PubMed ID: 21244986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic wave-based sensors using mode conversion in periodic gratings.
    Bender F; Dahint R; Josse F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1497-503. PubMed ID: 18244346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grooving and Absorption on Substrates to Reduce the Bulk Acoustic Wave for Surface Acoustic Wave Micro-Force Sensors.
    Feng Y; Yu H; Liu W; Hu K; Sun S; Yang Z; Wang B
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review.
    Länge K
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface acoustic wave sensors in the bioanalytical field: recent trends and challenges.
    Gronewold TM
    Anal Chim Acta; 2007 Nov; 603(2):119-28. PubMed ID: 17963831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lateral-field-excited LiTaO3 high-frequency bulk acoustic wave sensor.
    McCann DF; McGann JM; Parks JM; Frankel DJ; da Cunha MP; Vetelino JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):779-87. PubMed ID: 19406706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of wireless SAW sensors.
    Polh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum accuracy evaluation scheme for wireless saw delay-line sensors.
    Kuypers JH; Reindl LM; Tanaka S; Esashi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1640-52. PubMed ID: 18986954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.
    Zu H; Wu H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Mar; 63(3):486-505. PubMed ID: 26886982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and characterization of piezoelectric Sr3Ga2Ge4O14 crystals.
    Wu A; Xu J; Zhou J; Lu B; Wu X; Li X; Qian G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e613-5. PubMed ID: 16781749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-Mode Hybrid Quasi-SAW/BAW Resonators With High Effective Coupling Coefficient.
    Zhang Y; Zhou J; Xie Y; Tang C; Zou Y; Tovstopyat A; Yu H; Sun C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1916-1921. PubMed ID: 32286971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review.
    Yang Y; Dejous C; Hallil H
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods.
    Huang YS; Chen YY; Wu TT
    Nanotechnology; 2010 Mar; 21(9):095503. PubMed ID: 20139488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.