These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A review of wireless SAW sensors. Polh A IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):317-32. PubMed ID: 18238546 [TBL] [Abstract][Full Text] [Related]
6. Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags. Saldanha N; Malocha DC IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1750-8. PubMed ID: 22899121 [TBL] [Abstract][Full Text] [Related]
7. An interrogation unit for passive wireless SAW sensors based on fourier transform. Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089 [TBL] [Abstract][Full Text] [Related]
8. Note: A frequency modulated wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement. Droit C; Martin G; Ballandras S; Friedt JM Rev Sci Instrum; 2010 May; 81(5):056103. PubMed ID: 20515180 [TBL] [Abstract][Full Text] [Related]
9. Theory and application of passive SAW radio transponders as sensors. Reindl L; Scholl G; Ostertag T; Scherr H; Wolff U; Schmidt F IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1281-92. PubMed ID: 18244291 [TBL] [Abstract][Full Text] [Related]
10. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor. Yan D; Yang Y; Hong Y; Liang T; Yao Z; Chen X; Xiong J Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439393 [TBL] [Abstract][Full Text] [Related]
11. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection. Xu FQ; Wang W; Xue XF; Hu HL; Liu XL; Pan Y Sensors (Basel); 2015 Dec; 15(12):30187-98. PubMed ID: 26633419 [TBL] [Abstract][Full Text] [Related]
12. A wireless demodulation system for passive surface acoustic wave torque sensor. Ji X; Fan Y; Qi H; Chen J; Han T; Cai P Rev Sci Instrum; 2014 Dec; 85(12):125001. PubMed ID: 25554317 [TBL] [Abstract][Full Text] [Related]
13. Energy scavenging for long-term deployable wireless sensor networks. Mathúna CO; O'Donnell T; Martinez-Catala RV; Rohan J; O'Flynn B Talanta; 2008 May; 75(3):613-23. PubMed ID: 18585122 [TBL] [Abstract][Full Text] [Related]
14. Higher-order interference of low-coherence optical fiber sensors. Yang J; Yuan Y; Wu B; Zhou A; Yuan L Opt Lett; 2011 Sep; 36(17):3380-2. PubMed ID: 21886217 [TBL] [Abstract][Full Text] [Related]
15. An Impedance-Loaded Orthogonal Frequency-Coded SAW Sensor for Passive Wireless Sensor Networks. Dai X; Fang L; Zhang C; Sun H Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231025 [TBL] [Abstract][Full Text] [Related]
16. Comparison between BAW and SAW sensor principles. Benes E; Groschl M; Seifert F; Pohl A IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1314-30. PubMed ID: 18244294 [TBL] [Abstract][Full Text] [Related]
17. Wireless body sensor networks for health-monitoring applications. Hao Y; Foster R Physiol Meas; 2008 Nov; 29(11):R27-56. PubMed ID: 18843167 [TBL] [Abstract][Full Text] [Related]
18. A wireless and passive low-pressure sensor. Nicolay P; Lenzhofer M Sensors (Basel); 2014 Feb; 14(2):3065-76. PubMed ID: 24549249 [TBL] [Abstract][Full Text] [Related]
19. Wireless Passive LC Temperature and Strain Dual-Parameter Sensor. Wang Y; Tan Q; Zhang L; Lin B; Li M; Fan Z Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396867 [TBL] [Abstract][Full Text] [Related]
20. Monitoring of Mycoplasma genitalium growth and evaluation of antibacterial activity of antibiotics tetracycline and levofloxacin using a wireless magnetoelastic sensor. He B; Liao L; Xiao X; Gao S; Wu Y Biosens Bioelectron; 2009 Mar; 24(7):1990-4. PubMed ID: 19041236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]