These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18244304)

  • 1. Ultrasonic imaging using a 5-MHz multilayer/single-layer hybrid array for increased signal-to-noise ratio.
    Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1101-19. PubMed ID: 18244304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid multi/single layer array transducers for increased signal-to-noise ratio.
    Goldberg RL; Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):315-25. PubMed ID: 18244129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved signal-to-noise ratio in hybrid 2-D arrays: experimental confirmation.
    Emery CD; Smith SW
    Ultrason Imaging; 1997 Apr; 19(2):93-111. PubMed ID: 9381632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer piezoelectric ceramics for two-dimensional array transducers.
    Goldberg RL; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):761-71. PubMed ID: 18263264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic imaging using optoelectronic transmitters.
    Emery CD; Casey HC; Smith SW
    Ultrason Imaging; 1998 Apr; 20(2):113-31. PubMed ID: 9691369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
    Wygant IO; Jamal NS; Lee HJ; Nikoozadeh A; Oralkan O; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2145-56. PubMed ID: 19942502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):961-71. PubMed ID: 18238501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a capacitively decoupled transmit/receive NMR phased array for high field microscopy at 14.1T.
    Zhang X; Webb A
    J Magn Reson; 2004 Sep; 170(1):149-55. PubMed ID: 15324768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
    Wygant IO; Zhuang X; Yeh DT; Oralkan O; Sanli Ergun A; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):327-42. PubMed ID: 18334340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of signal-to-noise ratio for multilayer PZT transducers.
    Goldberg RL; Smith SW
    Ultrason Imaging; 1995 Apr; 17(2):95-113. PubMed ID: 7571210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.
    Matte GM; Van Neer PL; Danilouchkine MG; Huijssen J; Verweij MD; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):533-46. PubMed ID: 21429845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Nongaillard B; Queste S; Huang YP
    Ultrasonics; 2012 Jan; 52(1):47-53. PubMed ID: 21764097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems.
    Bae MH; Jeong MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1510-9. PubMed ID: 18238697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasparse, ultrawideband arrays.
    Schwartz JL; Steinberg BD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):376-93. PubMed ID: 18244190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.
    Rasmussen MF; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1638-50. PubMed ID: 25265174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging using a copolymer phased array.
    Goldberg RL; Smith SW; Brown LF
    Ultrason Imaging; 1992 Jul; 14(3):234-48. PubMed ID: 1448890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional arrays for medical ultrasound.
    Smith SW; Trahey GE; von Ramm OT
    Ultrason Imaging; 1992 Jul; 14(3):213-33. PubMed ID: 1448889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid phased array for improved internal auditory canal imaging at 3.0-T MR.
    Kocharian A; Lane JI; Bernstein MA; Lin C; Witte RJ; Huston J; Felmlee JP
    J Magn Reson Imaging; 2002 Sep; 16(3):300-4. PubMed ID: 12205586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.