These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18244326)

  • 1. Characterization of electromechanical coupling coefficients of piezoelectric films using composite resonators.
    Wang Z; Zhang Y; Cheeke JN
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1327-30. PubMed ID: 18244326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of electrodes on the effective electromechanical coupling coefficient distributions of high-overtone bulk acoustic resonator.
    Liu M; Li J; Wang C; Li J; Ma J
    Ultrasonics; 2015 Feb; 56():566-74. PubMed ID: 25459064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.
    Qin L; Sun Y; Wang QM; Zhong Y; Ou M; Jiang Z; Tian W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2803-12. PubMed ID: 23221230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.
    Pulskamp JS; Bedair SS; Polcawich RG; Smith GL; Martin J; Power B; Bhave SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):1043-60. PubMed ID: 22622990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant spectrum method to characterize piezoelectric films in composite resonators.
    Zhang Y; Wang Z; Cheeke JD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):321-33. PubMed ID: 12699166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modelling of nanostructured piezoelectric resonators (NAPIERs).
    Southin JE; Whatmore RW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):654-62. PubMed ID: 15244278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromechanical coupling constant extraction of thin-film piezoelectric materials using a bulk acoustic wave resonator.
    Naik RS; Lutsky JJ; Reif R; Sodini CG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):257-63. PubMed ID: 18244177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes.
    San Emeterio JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):108-13. PubMed ID: 18244108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.
    Qin L; Chen Q; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrodes on performance figures of thin film bulk acoustic resonators.
    Zhang T; Zhang H; Wang ZQ; Zhang SY
    J Acoust Soc Am; 2007 Sep; 122(3):1646. PubMed ID: 17927424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of electromechanical coupling coefficient by modified modal frequency spectrum method including the electrode effect.
    Zhang Y; Wang Z; Cheeke JD
    Ultrasonics; 2000 Mar; 38(1-8):114-7. PubMed ID: 10829640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter characterization of high-overtone bulk acoustic resonators by resonant spectrum method.
    Zhang H; Zhang SY; Zheng K
    Ultrasonics; 2005 Aug; 43(8):635-42. PubMed ID: 15982469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.
    Kunkel HA; Locke S; Pikeroen B
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(4):316-28. PubMed ID: 18285047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting the electromechanical coupling constant of piezoelectric thin film by the high-tone bulk acoustic resonator technique.
    Zhou C; Pang W; Li Q; Yu H; Hu X; Zhang H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):958-62. PubMed ID: 22622980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical coupling to Lamb and shear-horizontal modes in piezoelectric plates.
    Adler EL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):223-30. PubMed ID: 18284972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of acoustic substrate losses in 1850-MHz thin film BAW resonators.
    Pensala T; Thalhammer R; Dekker J; Kaitila J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2544-52. PubMed ID: 19942540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic properties of the film/plate layered structure.
    Anisimkin V; Voronova N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):578-84. PubMed ID: 21429848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Optimization of SHF Composite FBAR Resonators.
    Pillai G; Zope AA; Tsai JM; Li SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Dec; 64(12):1864-1873. PubMed ID: 28981414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.