These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 18244343)

  • 21. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.
    Killingback AL; Newey VR; El-Brawany MA; Nassiri DK
    Ultrasound Med Biol; 2008 Dec; 34(12):2035-42. PubMed ID: 18723269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature effects in the focal region of acoustic microscope.
    Maev RG; Maslov KI
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):166-71. PubMed ID: 18267571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear change of on-axis pressure and intensity maxima positions and its relation with the linear focal shift effect.
    Makov YN; Sánchez-Morcillo VJ; Camarena F; Espinosa V
    Ultrasonics; 2008 Dec; 48(8):678-86. PubMed ID: 18442837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dose-dependent disintegration of human endothelial monolayers by contrast echocardiography.
    Nixdorff U; Schmidt A; Morant T; Stilianakis N; Voigt JU; Flachskampf FA; Daniel WG; Garlichs CD
    Life Sci; 2005 Aug; 77(13):1493-501. PubMed ID: 15935397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal thresholds for teratogenicity, reproduction, and development.
    Ziskin MC; Morrissey J
    Int J Hyperthermia; 2011; 27(4):374-87. PubMed ID: 21591900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transmit beamforming for optimal second-harmonic generation.
    Hoilund-Kaupang H; Masoy SE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1559-69. PubMed ID: 21859575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-varying autoregressive spectral estimation for ultrasound attenuation in tissue characterization.
    Girault JM; Ossant F; Ouahabi A; Kouame D; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):650-9. PubMed ID: 18244216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal safety of vibro-acoustography using a confocal transducer.
    Chen S; Aquino W; Alizad A; Urban MW; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasound Med Biol; 2010 Feb; 36(2):343-9. PubMed ID: 20113864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computerized system for measuring the acoustic output from diagnostic ultrasound equipment.
    Schafer ME; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):102-9. PubMed ID: 18290136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Focusing ultrasound in biological media.
    Nikoonahad M; Iravani MV
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):209-15. PubMed ID: 18284970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption in liver at the focus of an ultrasonic shock wave field.
    Fry FJ; Reilly CR; Dines KA; Etchison MR; Trauner EJ
    Ultrasound Med Biol; 1991; 17(1):65-9. PubMed ID: 2021013
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound.
    Kujawska T; Secomski W; Kruglenko E; Krawczyk K; Nowicki A
    PLoS One; 2014; 9(4):e94929. PubMed ID: 24743838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study.
    Santos P; Tong L; Ortega A; Løvstakken L; Samset E; D'hooge J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1320-30. PubMed ID: 26168178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-invasive photo acoustic approach for human bone diagnosis.
    Thella AK; Rizkalla J; Helmy A; Suryadevara VK; Salama P; Rizkalla M
    J Orthop; 2016 Dec; 13(4):394-400. PubMed ID: 27536045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the spatial temperature distribution from combustion products: a diagnostic study.
    Kappagantula K; Crane C; Pantoya M
    Rev Sci Instrum; 2013 Oct; 84(10):104902. PubMed ID: 24182146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic intensity near a high-powered military jet aircraft.
    Stout TA; Gee KL; Neilsen TB; Wall AT; James MM
    J Acoust Soc Am; 2015 Jul; 138(1):EL1-7. PubMed ID: 26233049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.