These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 18244348)
1. The coupling-of-modes approach to the analysis of STW devices. II. Strashilov VL; Djordjev KD; Yantchev VM IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1512-7. PubMed ID: 18244348 [TBL] [Abstract][Full Text] [Related]
2. Coupling-of-modes analysis of STW resonators including loss mechanism. Yantchev VM; Strashilov VL IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):331-6. PubMed ID: 12322882 [TBL] [Abstract][Full Text] [Related]
3. STW two-port asynchronous resonator on BT-cut quartz. Soluch W IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2519-21. PubMed ID: 19049932 [TBL] [Abstract][Full Text] [Related]
4. Scattering matrix approach to STW resonators. Soluch W IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):327-30. PubMed ID: 12322881 [TBL] [Abstract][Full Text] [Related]
5. Precision frequency trimming of SAW and STW resonators using Xe(+) heavy ion bombardment. Aliev VS; Avramov ID IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):694-8. PubMed ID: 18263257 [TBL] [Abstract][Full Text] [Related]
6. STW in-line acoustically coupled resonator filter on quartz. Soluch W IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):879-82. PubMed ID: 18467233 [TBL] [Abstract][Full Text] [Related]
7. Design and test of 3 GHz, fundamental mode surface transverse wave resonators on quartz. Bigler E; Gavignet E; Ballandras S; Denissenko S; Cambril E IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):399-405. PubMed ID: 18244137 [TBL] [Abstract][Full Text] [Related]
8. Two resonances of different nature in STW resonators with aperture- weighted metallization. Plessky V; Yantchev V IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):766-70. PubMed ID: 25881353 [TBL] [Abstract][Full Text] [Related]
9. Micromachined thin film plate acoustic wave resonators (FPAR): Part II. Yantchev V; Arapan L; Katardjiev I IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2701-10. PubMed ID: 20040407 [TBL] [Abstract][Full Text] [Related]
10. Gigahertz range resonant devices for oscillator applications using shear horizontal acoustic waves. Avramov ID IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):459-68. PubMed ID: 18263207 [TBL] [Abstract][Full Text] [Related]
11. A perturbation method for modeling the thermal sensitivity of surface transverse waves. Gavignet E; Ballandras S; Bigler E IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):201-7. PubMed ID: 18244118 [TBL] [Abstract][Full Text] [Related]
12. Transverse modes in one-port SAW resonators. Campbell CK; Edmonson PJ; Smith PM IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):785-7. PubMed ID: 18267696 [TBL] [Abstract][Full Text] [Related]
13. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers. Avramov ID IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574 [TBL] [Abstract][Full Text] [Related]
14. Design of SAW synchronous resonators on ST cut quartz. Soluch W IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1324-6. PubMed ID: 18244325 [TBL] [Abstract][Full Text] [Related]
15. Arbitrarily oriented SAW gratings: network model and the coupling-of-modes description. Adler EL; da Cunha MP; Schwelb O IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):220-30. PubMed ID: 18267578 [TBL] [Abstract][Full Text] [Related]
16. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. Pulskamp JS; Bedair SS; Polcawich RG; Smith GL; Martin J; Power B; Bhave SA IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):1043-60. PubMed ID: 22622990 [TBL] [Abstract][Full Text] [Related]
17. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies. Ivira B; Benech P; Fillit R; Ndagijimana F; Ancey P; Parat G IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):421-30. PubMed ID: 18334348 [TBL] [Abstract][Full Text] [Related]
18. A micromachined vibration isolation system for reducing the vibration sensitivity of surface transverse wave resonators. Reid JR; Bright VM; Kosinski JA IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):528-34. PubMed ID: 18244203 [TBL] [Abstract][Full Text] [Related]
19. Characterization of electromechanical coupling coefficients of piezoelectric films using composite resonators. Wang Z; Zhang Y; Cheeke JN IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1327-30. PubMed ID: 18244326 [TBL] [Abstract][Full Text] [Related]