These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18244354)

  • 1. Noise in microelectromechanical system resonators.
    Vig JR; Kim Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1558-65. PubMed ID: 18244354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-high-frequency two-port AlN contour-mode resonators for RF applications.
    Rinaldi M; Zuniga C; Zuo C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules.
    Yong YK; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):543-50. PubMed ID: 18285076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonator surface contamination-a cause of frequency fluctuations?
    Yong YK; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):452-8. PubMed ID: 18285006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frequency nanofluidics: a universal formulation of the fluid dynamics of MEMS and NEMS.
    Ekinci KL; Yakhot V; Rajauria S; Colosqui C; Karabacak DM
    Lab Chip; 2010 Nov; 10(22):3013-25. PubMed ID: 20862440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1/f noise in etched groove surface acoustic wave (SAW) resonators.
    Parker TE; Andres D; Greer JA; Montress GK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):853-62. PubMed ID: 18263275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
    Mile E; Jourdan G; Bargatin I; Labarthe S; Marcoux C; Andreucci P; Hentz S; Kharrat C; Colinet E; Duraffourg L
    Nanotechnology; 2010 Apr; 21(16):165504. PubMed ID: 20351411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature superconducting resonators.
    Taber RC; Hollenhorst JN; Cutler LS; Bagwell TL; Newman N; Cole BF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):398-404. PubMed ID: 18267649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concepts and Key Technologies of Microelectromechanical Systems Resonators.
    Feng T; Yuan Q; Yu D; Wu B; Wang H
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Measurement of Nanotube Resonator Fluctuations in an Electron Microscope.
    Tsioutsios I; Tavernarakis A; Osmond J; Verlot P; Bachtold A
    Nano Lett; 2017 Mar; 17(3):1748-1755. PubMed ID: 28186773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A micromachined vibration isolation system for reducing the vibration sensitivity of surface transverse wave resonators.
    Reid JR; Bright VM; Kosinski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):528-34. PubMed ID: 18244203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drive-level dependence of doubly rotated langasite resonators with different configurations.
    Zhang H; Kosinski J; Xie Y; Turner J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):963-9. PubMed ID: 23661130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PZT transduction of high-overtone contour-mode resonators.
    Chandrahalim H; Bhave SA; Polcawich RG; Pulskamp JS; Kaul R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2035-41. PubMed ID: 20875993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Characterization of Microelectromechanical Silicon Carbide Resonators.
    Chang WT; Zorman C
    Sensors (Basel); 2008 Sep; 8(9):5759-5774. PubMed ID: 27873838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic imaging of micro-vibrations with an ultra-wide bandwidth and a femtometer noise using switchable pulsed laser interferometry.
    Peng Z; Ding J; Wu J; Cheng J; Liu Y; Sun C; Zhang W; Shao L
    Opt Express; 2024 May; 32(11):18441-18452. PubMed ID: 38858999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical motion sensor for resonant-bar gravitational wave antennas.
    Richard JP; Pang Y; Hamilton JJ
    Appl Opt; 1992 Apr; 31(10):1641-5. PubMed ID: 20720800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.