These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18244355)

  • 1. Theoretical study of steady-state temperature rise within the eye due to ultrasound insonation.
    Herman BA; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1566-74. PubMed ID: 18244355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of unscanned-mode soft-tissue thermal index for rectangular sources and proposed new indices.
    O'Brien WD; Yang Y; Simpson DG
    Ultrasound Med Biol; 2004 Jul; 30(7):965-72. PubMed ID: 15313328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the unscanned soft-tissue thermal index.
    O'Brien WR; Ellis DS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1459-76. PubMed ID: 18244343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of Temperature Rise within the Lens of the Porcine Eye Caused by Ultrasound Insonation.
    King RL; Liu Y; Harris GR
    Ultrasound Med Biol; 2017 Feb; 43(2):476-481. PubMed ID: 27817969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft tissue temperature rise caused by scanned, diagnostic ultrasound.
    Curley MG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):59-66. PubMed ID: 18263157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of nonscanned mode soft-tissue thermal index in the presence of the residual temperature rise.
    Karagoz I; Kartal MK
    Ultrasound Med Biol; 2006 May; 32(5):741-50. PubMed ID: 16677933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz.
    Flyckt VM; Raaymakers BW; Kroeze H; Lagendijk JJ
    Phys Med Biol; 2007 May; 52(10):2691-701. PubMed ID: 17473345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of tissue mimicking quality of tofu for biomedical ultrasound.
    Kim YT; Kim HC; Inada-Kim M; Jung SS; Yun YH; Jho MJ; Sandstrom K
    Ultrasound Med Biol; 2009 Mar; 35(3):472-81. PubMed ID: 19101073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature elevation in a beam of ultrasound.
    Nyborg WL; Steele RB
    Ultrasound Med Biol; 1983; 9(6):611-20. PubMed ID: 6670146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.
    Liang HD; Zhou LX; Wells PN; Halliwell M
    Ultrasound Med Biol; 2009 May; 35(5):773-80. PubMed ID: 19243879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature effects in the focal region of acoustic microscope.
    Maev RG; Maslov KI
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):166-71. PubMed ID: 18267571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature rise generated by ultrasound in the presence of contrast agent.
    Wu J
    Ultrasound Med Biol; 1998 Feb; 24(2):267-74. PubMed ID: 9550185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic temperature imaging for guiding focused ultrasound surgery: effect of angle between imaging beam and therapy beam.
    Miller NR; Bograchev KM; Bamber JC
    Ultrasound Med Biol; 2005 Mar; 31(3):401-13. PubMed ID: 15749564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal assessment of 40-MHz pulsed Doppler ultrasound in human eye.
    Cucevic V; Brown AS; Foster FS
    Ultrasound Med Biol; 2005 Apr; 31(4):565-73. PubMed ID: 15831335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in developing a thermal method for measuring the output power of medical ultrasound transducers that exploits the pyroelectric effect.
    Zeqiri B; Zauhar G; Hodnett M; Barrie J
    Ultrasonics; 2011 May; 51(4):420-4. PubMed ID: 21163509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of propagation of focused ultrasound through the eye structures].
    Dmitriev VN; Solontsova LV; Gerchikov AN
    Biofizika; 1987; 32(3):500-6. PubMed ID: 3620525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acoustic insonation parameters on ultrasound contrast agent destruction.
    Yeh CK; Su SY
    Ultrasound Med Biol; 2008 Aug; 34(8):1281-91. PubMed ID: 18343019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study.
    Connor CW; Hynynen K
    Phys Med Biol; 2002 Jun; 47(11):1911-28. PubMed ID: 12108775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney.
    Quesson B; Laurent C; Maclair G; de Senneville BD; Mougenot C; Ries M; Carteret T; Rullier A; Moonen CT
    NMR Biomed; 2011 Feb; 24(2):145-53. PubMed ID: 21344531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.