These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18244430)

  • 21. A constructive algorithm to solve "convex recursive deletion" (CoRD) classification problems via two-layer perceptron networks.
    Cabrelli C; Molter U; Shonkwiler R
    IEEE Trans Neural Netw; 2000; 11(3):811-6. PubMed ID: 18249809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probabilistic lower bounds for approximation by shallow perceptron networks.
    Kůrková V; Sanguineti M
    Neural Netw; 2017 Jul; 91():34-41. PubMed ID: 28482227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural networks for convex hull computation.
    Leung Y; Zhang JS; Xu ZB
    IEEE Trans Neural Netw; 1997; 8(3):601-11. PubMed ID: 18255663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning algorithms for feedforward networks based on finite samples.
    Rao NV; Protopopescu V; Mann RC; Oblow EM; Iyengar SS
    IEEE Trans Neural Netw; 1996; 7(4):926-40. PubMed ID: 18263488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new Jacobian matrix for optimal learning of single-layer neural networks.
    Peng JX; Li K; Irwin GW
    IEEE Trans Neural Netw; 2008 Jan; 19(1):119-29. PubMed ID: 18269943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Convergence of cyclic and almost-cyclic learning with momentum for feedforward neural networks.
    Wang J; Yang J; Wu W
    IEEE Trans Neural Netw; 2011 Aug; 22(8):1297-306. PubMed ID: 21813357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Guaranteed approximation error estimation of neural networks and model modification.
    Yang Y; Wang T; Woolard JP; Xiang W
    Neural Netw; 2022 Jul; 151():61-69. PubMed ID: 35395513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of bias term in projection pursuit learning improves approximation and convergence properties.
    Kwok TY; Yeung DY
    IEEE Trans Neural Netw; 1996; 7(5):1168-83. PubMed ID: 18263512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of boundedness and convergence of online gradient method for two-layer feedforward neural networks.
    Lu Xu ; Jinshu Chen ; Defeng Huang ; Jianhua Lu ; Licai Fang
    IEEE Trans Neural Netw Learn Syst; 2013 Aug; 24(8):1327-38. PubMed ID: 24808571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Best approximation of Gaussian neural networks with nodes uniformly spaced.
    Mulero-Martinez JI
    IEEE Trans Neural Netw; 2008 Feb; 19(2):284-98. PubMed ID: 18269959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions.
    Huang GB; Babri HA
    IEEE Trans Neural Netw; 1998; 9(1):224-9. PubMed ID: 18252445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Error bounds for approximations with deep ReLU networks.
    Yarotsky D
    Neural Netw; 2017 Oct; 94():103-114. PubMed ID: 28756334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimization of error functionals over perceptron networks.
    Kůrková V
    Neural Comput; 2008 Jan; 20(1):252-70. PubMed ID: 18045008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bounds on the number of hidden neurons in three-layer binary neural networks.
    Zhang Z; Ma X; Yang Y
    Neural Netw; 2003 Sep; 16(7):995-1002. PubMed ID: 14692634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Approximation capability in C(R (n)) by multilayer feedforward networks and related problems.
    Chen T; Chen H; Liu RW
    IEEE Trans Neural Netw; 1995; 6(1):25-30. PubMed ID: 18263282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Universal approximation of extreme learning machine with adaptive growth of hidden nodes.
    Zhang R; Lan Y; Huang GB; Xu ZB
    IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):365-71. PubMed ID: 24808516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approximations of Functions by a Multilayer Perceptron: a New Approach.
    Pagès G; Attali JG
    Neural Netw; 1997 Aug; 10(6):1069-1081. PubMed ID: 12662500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Objective functions for training new hidden units in constructive neural networks.
    Kwok TY; Yeung DY
    IEEE Trans Neural Netw; 1997; 8(5):1131-48. PubMed ID: 18255715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Greedy Algorithm for Faster Feasibility Evaluation of All-Terminal-Reliable Networks.
    Jin-Myung Won ; Karray F
    IEEE Trans Syst Man Cybern B Cybern; 2011 Dec; 41(6):1600-11. PubMed ID: 21724516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.