These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18244465)

  • 21. Robust Blind Learning Algorithm for Nonlinear Equalization Using Input Decision Information.
    Xu L; Huang DD; Guo YJ
    IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):3009-20. PubMed ID: 25706894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blind equalization using a predictive radial basis function neural network.
    Xie N; Leung H
    IEEE Trans Neural Netw; 2005 May; 16(3):709-20. PubMed ID: 15940998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust radial basis function neural networks.
    Lee CC; Chung PC; Tsai JR; Chang CI
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):674-85. PubMed ID: 18252348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-term prediction of chaotic time series by using RBF network with regression weights.
    Rojas I; Gonzalez J; CaƱas A; Diaz AF; Rojas FJ; Rodriguez M
    Int J Neural Syst; 2000 Oct; 10(5):353-64. PubMed ID: 11195935
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using recurrent neural networks for adaptive communication channel equalization.
    Kechriotis G; Zervas E; Manolakos ES
    IEEE Trans Neural Netw; 1994; 5(2):267-78. PubMed ID: 18267796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized multiscale radial basis function networks.
    Billings SA; Wei HL; Balikhin MA
    Neural Netw; 2007 Dec; 20(10):1081-94. PubMed ID: 17993257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear blind source separation using a radial basis function network.
    Tan Y; Wang J; Zurada JM
    IEEE Trans Neural Netw; 2001; 12(1):124-34. PubMed ID: 18244368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved two-stage equalization for coherent Pol-Mux QPSK and 16-QAM systems.
    Zhu C; Tran AV; Chen S; Du LB; Anderson T; Lowery AJ; Skafidas E
    Opt Express; 2012 Dec; 20(26):B141-50. PubMed ID: 23262844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 112-Gb/s SSB 16-QAM signal transmission over 120-km SMF with direct detection using a MIMO-ANN nonlinear equalizer.
    An S; Zhu Q; Li J; Ling Y; Su Y
    Opt Express; 2019 Apr; 27(9):12794-12805. PubMed ID: 31052815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the structure and initial parameter identification of Gaussian RBF networks.
    Bhatt RB; Gopal M
    Int J Neural Syst; 2004 Dec; 14(6):373-80. PubMed ID: 15714604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orthogonal least squares based complex-valued functional link network.
    Amin MF; Savitha R; Amin MI; Murase K
    Neural Netw; 2012 Aug; 32():257-66. PubMed ID: 22386786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A repair algorithm for radial basis function neural network and its application to chemical oxygen demand modeling.
    Qiao JF; Han HG
    Int J Neural Syst; 2010 Feb; 20(1):63-74. PubMed ID: 20180254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive deep-learning equalizer based on constellation partitioning scheme with reduced computational complexity in UVLC system.
    Chen H; Niu W; Zhao Y; Zhang J; Chi N; Li Z
    Opt Express; 2021 Jul; 29(14):21773-21782. PubMed ID: 34265957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks.
    Patra JC; Kot AC
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(4):505-11. PubMed ID: 18238146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two algorithms for neural-network design and training with application to channel equalization.
    Sweatman CZ; Mulgrew B; Gibson GJ
    IEEE Trans Neural Netw; 1998; 9(3):533-43. PubMed ID: 18252477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid acousto-optic and digital equalization for microwave digital radio channels.
    Anderson CS; Vanderlugt A
    Opt Lett; 1990 Nov; 15(21):1182-4. PubMed ID: 19771034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic determination of radial basis functions: an immunity-based approach.
    de Castro LN; Von Zuben FJ
    Int J Neural Syst; 2001 Dec; 11(6):523-35. PubMed ID: 11852437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A growing and pruning method for radial basis function networks.
    Bortman M; Aladjem M
    IEEE Trans Neural Netw; 2009 Jun; 20(6):1039-45. PubMed ID: 19447726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-organizing radial basis function network for real-time approximation of continuous-time dynamical systems.
    Lian J; Lee Y; Sudhoff SD; Zak SH
    IEEE Trans Neural Netw; 2008 Mar; 19(3):460-74. PubMed ID: 18334365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A sequential learning scheme for function approximation using minimal radial basis function neural networks.
    Lu Y; Sundararajan N; Saratchandran P
    Neural Comput; 1997 Feb; 9(2):461-78. PubMed ID: 9117909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.