These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 18244502)
1. A formal analysis of stopping criteria of decomposition methods for support vector machines. Lin CJ IEEE Trans Neural Netw; 2002; 13(5):1045-52. PubMed ID: 18244502 [TBL] [Abstract][Full Text] [Related]
2. On the convergence of the decomposition method for support vector machines. Lin CJ IEEE Trans Neural Netw; 2001; 12(6):1288-98. PubMed ID: 18249958 [TBL] [Abstract][Full Text] [Related]
3. Global convergence of decomposition learning methods for support vector machines. Takahashi N; Nishi T IEEE Trans Neural Netw; 2006 Nov; 17(6):1362-9. PubMed ID: 17131653 [TBL] [Abstract][Full Text] [Related]
4. A study on SMO-type decomposition methods for support vector machines. Chen PH; Fan RE; Lin CJ IEEE Trans Neural Netw; 2006 Jul; 17(4):893-908. PubMed ID: 16856653 [TBL] [Abstract][Full Text] [Related]
5. A comparison of methods for multiclass support vector machines. Hsu CW; Lin CJ IEEE Trans Neural Netw; 2002; 13(2):415-25. PubMed ID: 18244442 [TBL] [Abstract][Full Text] [Related]
6. A convergent hybrid decomposition algorithm model for SVM training. Lucidi S; Palagi L; Risi A; Sciandrone M IEEE Trans Neural Netw; 2009 Jun; 20(6):1055-60. PubMed ID: 19435679 [TBL] [Abstract][Full Text] [Related]
7. Feasibility and finite convergence analysis for accurate on-line ν-support vector machine. Bin Gu ; Sheng VS IEEE Trans Neural Netw Learn Syst; 2013 Aug; 24(8):1304-15. PubMed ID: 24808569 [TBL] [Abstract][Full Text] [Related]
8. The analysis of decomposition methods for support vector machines. Chang CC; Hsu CW; Lin CJ IEEE Trans Neural Netw; 2000; 11(4):1003-8. PubMed ID: 18249827 [TBL] [Abstract][Full Text] [Related]
9. Rigorous proof of termination of SMO algorithm for support vector machines. Takahashi N; Nishi T IEEE Trans Neural Netw; 2005 May; 16(3):774-6. PubMed ID: 15941003 [TBL] [Abstract][Full Text] [Related]
10. A study on L2-loss (squared hinge-loss) multiclass SVM. Lee CP; Lin CJ Neural Comput; 2013 May; 25(5):1302-23. PubMed ID: 23470126 [TBL] [Abstract][Full Text] [Related]
11. Condensed vector machines: learning fast machine for large data. Nguyen DD; Matsumoto K; Takishima Y; Hashimoto K IEEE Trans Neural Netw; 2010 Dec; 21(12):1903-14. PubMed ID: 20959266 [TBL] [Abstract][Full Text] [Related]
12. Adaptive Kernel Value Caching for SVM Training. Li Q; Wen Z; He B IEEE Trans Neural Netw Learn Syst; 2020 Jul; 31(7):2376-2386. PubMed ID: 31689215 [TBL] [Abstract][Full Text] [Related]
13. Support vector machines with constraints for sparsity in the primal parameters. Gómez-Verdejo V; Martínez-Ramón M; Arenas-García J; Lázaro-Gredilla M; Molina-Bulla H IEEE Trans Neural Netw; 2011 Aug; 22(8):1269-83. PubMed ID: 21733774 [TBL] [Abstract][Full Text] [Related]
14. Simple proof of convergence of the SMO algorithm for different SVM variants. López J; Dorronsoro JR IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1142-7. PubMed ID: 24807139 [TBL] [Abstract][Full Text] [Related]
15. Combining DC algorithms (DCAs) and decomposition techniques for the training of nonpositive-semidefinite kernels. Akoa FB IEEE Trans Neural Netw; 2008 Nov; 19(11):1854-72. PubMed ID: 18990641 [TBL] [Abstract][Full Text] [Related]
16. Two criteria for model selection in multiclass support vector machines. Wang L; Xue P; Chan KL IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1432-48. PubMed ID: 19022717 [TBL] [Abstract][Full Text] [Related]
17. On convergence properties of pocket algorithm. Muselli M IEEE Trans Neural Netw; 1997; 8(3):623-9. PubMed ID: 18255665 [TBL] [Abstract][Full Text] [Related]
18. Training nu-support vector classifiers: theory and algorithms. Chang CC; Lin CJ Neural Comput; 2001 Sep; 13(9):2119-47. PubMed ID: 11516360 [TBL] [Abstract][Full Text] [Related]
19. Quantum optimization for training support vector machines. Anguita D; Ridella S; Rivieccio F; Zunino R Neural Netw; 2003; 16(5-6):763-70. PubMed ID: 12850032 [TBL] [Abstract][Full Text] [Related]
20. Analysis of programming properties and the row-column generation method for 1-norm support vector machines. Zhang L; Zhou W Neural Netw; 2013 Dec; 48():32-43. PubMed ID: 23899643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]