These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18244544)

  • 1. Silicon synaptic adaptation mechanisms for homeostasis and contrast gain control.
    Liu SC; Minch BA
    IEEE Trans Neural Netw; 2002; 13(6):1497-503. PubMed ID: 18244544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds.
    Benda J; Maler L; Longtin A
    J Neurophysiol; 2010 Nov; 104(5):2806-20. PubMed ID: 21045213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic range and sensitivity adaptation in a silicon spiking neuron.
    Shin J; Koch C
    IEEE Trans Neural Netw; 1999; 10(5):1232-8. PubMed ID: 18252624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations.
    Moreno-Bote R; Parga N
    Neural Comput; 2010 Jun; 22(6):1528-72. PubMed ID: 20100073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
    Vogelstein RJ; Mallik U; Vogelstein JT; Cauwenberghs G
    IEEE Trans Neural Netw; 2007 Jan; 18(1):253-65. PubMed ID: 17278476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Firing rate control of a neuron using a linear proportional-integral controller.
    Miranda-Domínguez O; Gonia J; Netoff TI
    J Neural Eng; 2010 Dec; 7(6):066004. PubMed ID: 20975212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparseness, antisparseness and anything in between: the operating point of a neuron determines its computational repertoire.
    Elliott T
    Neural Comput; 2014 Sep; 26(9):1924-72. PubMed ID: 24922502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network algorithmics and the emergence of the cortical synaptic-weight distribution.
    Nathan A; Barbosa VC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021916. PubMed ID: 20365604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order statistics of input ensembles and the response of simple model neurons.
    Kuhn A; Aertsen A; Rotter S
    Neural Comput; 2003 Jan; 15(1):67-101. PubMed ID: 12590820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An event-based neural network architecture with an asynchronous programmable synaptic memory.
    Moradi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):98-107. PubMed ID: 24681923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sparse generative model of V1 simple cells with intrinsic plasticity.
    Weber C; Triesch J
    Neural Comput; 2008 May; 20(5):1261-84. PubMed ID: 18194109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic integration in rat frontal cortex shaped by network activity.
    Léger JF; Stern EA; Aertsen A; Heck D
    J Neurophysiol; 2005 Jan; 93(1):281-93. PubMed ID: 15306631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuromime in VLSI.
    Wolpert S; Micheli-Tzanakou E
    IEEE Trans Neural Netw; 1996; 7(2):300-6. PubMed ID: 18255584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory.
    Chicca E; Badoni D; Dante V; D'Andreagiovanni M; Salina G; Carota L; Fusi S; Del Giudice P
    IEEE Trans Neural Netw; 2003; 14(5):1297-307. PubMed ID: 18244578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation oscillator-realized artificial electronic neurons, their responses, and noise.
    Lim H; Ahn HW; Kornijcuk V; Kim G; Seok JY; Kim I; Hwang CS; Jeong DS
    Nanoscale; 2016 May; 8(18):9629-40. PubMed ID: 27103542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity.
    Bohte SM; Mozer MC
    Neural Comput; 2007 Feb; 19(2):371-403. PubMed ID: 17206869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compact 3D VLSI classifier using bagging threshold network ensembles.
    Bermak A; Martinez D
    IEEE Trans Neural Netw; 2003; 14(5):1097-109. PubMed ID: 18244563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon modeling of the Mihalaş-Niebur neuron.
    Folowosele F; Hamilton TJ; Etienne-Cummings R
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1915-27. PubMed ID: 21990331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical mechanisms underlying contrast gain control in single neurons.
    Yu Y; Lee TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011901. PubMed ID: 12935170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.