These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18244582)

  • 1. An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion.
    Nakada K; Asai T; Amemiya Y
    IEEE Trans Neural Netw; 2003; 14(5):1356-65. PubMed ID: 18244582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple robot suggests physical interlimb communication is essential for quadruped walking.
    Owaki D; Kano T; Nagasawa K; Tero A; Ishiguro A
    J R Soc Interface; 2013 Jan; 10(78):20120669. PubMed ID: 23097501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander.
    Ijspeert AJ
    Biol Cybern; 2001 May; 84(5):331-48. PubMed ID: 11357547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot.
    Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P
    Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust control of CPG-based 3D neuromusculoskeletal walking model.
    Kim Y; Tagawa Y; Obinata G; Hase K
    Biol Cybern; 2011 Oct; 105(3-4):269-82. PubMed ID: 22138897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sensory-driven controller for quadruped locomotion.
    Ferreira C; Santos CP
    Biol Cybern; 2017 Feb; 111(1):49-67. PubMed ID: 28062927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple decentralized control mechanism that enables limb adjustment for adaptive quadruped running.
    Fukuhara A; Koizumi Y; Baba T; Suzuki S; Kano T; Ishiguro A
    Proc Biol Sci; 2021 Nov; 288(1962):20211622. PubMed ID: 34727718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations.
    Guertin PA
    Front Neurol; 2012; 3():183. PubMed ID: 23403923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized Robot Locomotion.
    Sun T; Xiong X; Dai Z; Owaki D; Manoonpong P
    Front Robot AI; 2021; 8():638684. PubMed ID: 33912596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement learning-based optimization of locomotion controller using multiple coupled CPG oscillators for elongated undulating fin propulsion.
    Nguyen VD; Vo DQ; Duong VT; Nguyen HH; Nguyen TT
    Math Biosci Eng; 2022 Jan; 19(1):738-758. PubMed ID: 34903010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.