These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18244780)

  • 1. A Hebbian feedback covariance learning paradigm for self-tuning optimal control.
    Young DL; Poon CS
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(2):173-86. PubMed ID: 18244780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A global bioheat model with self-tuning optimal regulation of body temperature using Hebbian feedback covariance learning.
    Ong ML; Ng EY
    Med Phys; 2005 Dec; 32(12):3819-31. PubMed ID: 16475782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.
    Lu B; Dibazar A; Berger TW
    Neural Netw; 2010 Dec; 23(10):1252-63. PubMed ID: 20655704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-tuning Optimal Regulation of Respiratory Motor Output by Hebbian Covariance Learning.
    Poon CS
    Neural Netw; 1996 Nov; 9(8):1367-1383. PubMed ID: 12662540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear complex-valued extensions of Hebbian learning: an essay.
    Fiori S
    Neural Comput; 2005 Apr; 17(4):779-838. PubMed ID: 15829090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control.
    Shih P; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1162-79. PubMed ID: 19336317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global adaptation in networks of selfish components: emergent associative memory at the system scale.
    Watson RA; Mills R; Buckley CL
    Artif Life; 2011; 17(3):147-66. PubMed ID: 21554114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.
    Mahmoudi B; Pohlmeyer EA; Prins NW; Geng S; Sanchez JC
    J Neural Eng; 2013 Dec; 10(6):066005. PubMed ID: 24100047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation.
    Soltoggio A; Stanley KO
    Neural Netw; 2012 Oct; 34():28-41. PubMed ID: 22796669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.
    Yang Q; Jagannathan S
    IEEE Trans Syst Man Cybern B Cybern; 2012 Apr; 42(2):377-90. PubMed ID: 21947529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hebbian errors in learning: an analysis using the Oja model.
    Rădulescu A; Cox K; Adams P
    J Theor Biol; 2009 Jun; 258(4):489-501. PubMed ID: 19248792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.
    Lewis FL; Vamvoudakis KG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite adaptive control with locally weighted statistical learning.
    Nakanishi J; Farrell JA; Schaal S
    Neural Netw; 2005 Jan; 18(1):71-90. PubMed ID: 15649663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning to adaptive control of nonlinear systems.
    Hwang KS; Tan SW; Tsai MC
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(3):514-21. PubMed ID: 18238198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of computational models of familiarity discrimination in the perirhinal cortex.
    Bogacz R; Brown MW
    Hippocampus; 2003; 13(4):494-524. PubMed ID: 12836918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models.
    Wennekers T
    Neural Comput; 2001 Aug; 13(8):1721-47. PubMed ID: 11506668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral analysis of differential Hebbian learning in closed-loop systems.
    Kulvicius T; Kolodziejski C; Tamosiunaite M; Porr B; Wörgötter F
    Biol Cybern; 2010 Oct; 103(4):255-71. PubMed ID: 20556620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.