These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18244936)

  • 1. Methane emissions from upland forest soils and vegetation.
    Megonigal JP; Guenther AB
    Tree Physiol; 2008 Apr; 28(4):491-8. PubMed ID: 18244936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree stem bases are sources of CH
    Welch B; Gauci V; Sayer EJ
    Glob Chang Biol; 2019 Jan; 25(1):361-372. PubMed ID: 30367532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane production and emissions in trees and forests.
    Covey KR; Megonigal JP
    New Phytol; 2019 Apr; 222(1):35-51. PubMed ID: 30521089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperate forest methane sink diminished by tree emissions.
    Pitz S; Megonigal JP
    New Phytol; 2017 Jun; 214(4):1432-1439. PubMed ID: 28370057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2.
    van Groenigen KJ; Osenberg CW; Hungate BA
    Nature; 2011 Jul; 475(7355):214-6. PubMed ID: 21753852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of climate and land use on N
    Gütlein A; Gerschlauer F; Kikoti I; Kiese R
    Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane emissions from the trunks of living trees on upland soils.
    Wang ZP; Gu Q; Deng FD; Huang JH; Megonigal JP; Yu Q; Lü XT; Li LH; Chang S; Zhang YH; Feng JC; Han XG
    New Phytol; 2016 Jul; 211(2):429-39. PubMed ID: 26918765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of vegetation on the methane budget of a temperate forest.
    Plain C; Ndiaye FK; Bonnaud P; Ranger J; Epron D
    New Phytol; 2019 Feb; 221(3):1447-1456. PubMed ID: 30267569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane uptake in global forest and grassland soils from 1981 to 2010.
    Yu L; Huang Y; Zhang W; Li T; Sun W
    Sci Total Environ; 2017 Dec; 607-608():1163-1172. PubMed ID: 28728308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climatic role of terrestrial ecosystem under elevated CO
    Liu S; Ji C; Wang C; Chen J; Jin Y; Zou Z; Li S; Niu S; Zou J
    Ecol Lett; 2018 Jul; 21(7):1108-1118. PubMed ID: 29736982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent drivers of the microbial methane sink in temperate forest and grassland soils.
    Täumer J; Kolb S; Boeddinghaus RS; Wang H; Schöning I; Schrumpf M; Urich T; Marhan S
    Glob Chang Biol; 2021 Feb; 27(4):929-940. PubMed ID: 33135275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review.
    Laanbroek HJ
    Ann Bot; 2010 Jan; 105(1):141-53. PubMed ID: 19689973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost.
    Köster E; Köster K; Berninger F; Prokushkin A; Aaltonen H; Zhou X; Pumpanen J
    J Environ Manage; 2018 Dec; 228():405-415. PubMed ID: 30243076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecosystem fluxes of hydrogen in a mid-latitude forest driven by soil microorganisms and plants.
    Meredith LK; Commane R; Keenan TF; Klosterman ST; Munger JW; Templer PH; Tang J; Wofsy SC; Prinn RG
    Glob Chang Biol; 2017 Feb; 23(2):906-919. PubMed ID: 27514856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils.
    Bogner JE; Spokas KA; Chanton JP
    J Environ Qual; 2011; 40(3):1010-20. PubMed ID: 21546687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of NPP into forest CH
    Zhou X; Zuo H; Smaill SJ
    Trends Plant Sci; 2021 Dec; 26(12):1210-1212. PubMed ID: 34657828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels.
    Vicca S; Janssens IA; Flessa H; Fiedler S; Jungkunst HF
    Geobiology; 2009 Sep; 7(4):465-76. PubMed ID: 19570105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the legacy of snowmelt timing on soil greenhouse gas emissions in a seasonally dry montane forest.
    Blankinship JC; McCorkle EP; Meadows MW; Hart SC
    Glob Chang Biol; 2018 Dec; 24(12):5933-5947. PubMed ID: 30295387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.