BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18245086)

  • 1. Structure of human dual specificity protein phosphatase 23, VHZ, enzyme-substrate/product complex.
    Agarwal R; Burley SK; Swaminathan S
    J Biol Chem; 2008 Apr; 283(14):8946-53. PubMed ID: 18245086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic activity and substrate specificity of mitogen-activated protein kinase p38alpha in different phosphorylation states.
    Zhang YY; Mei ZQ; Wu JW; Wang ZX
    J Biol Chem; 2008 Sep; 283(39):26591-601. PubMed ID: 18669639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26.
    Won EY; Lee SO; Lee DH; Lee D; Bae KH; Lee SC; Kim SJ; Chi SW
    PLoS One; 2016; 11(9):e0162115. PubMed ID: 27583453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic structure of dual-specificity phosphatase 26, a novel p53 phosphatase.
    Lokareddy RK; Bhardwaj A; Cingolani G
    Biochemistry; 2013 Feb; 52(5):938-48. PubMed ID: 23298255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.
    Yokota T; Nara Y; Kashima A; Matsubara K; Misawa S; Kato R; Sugio S
    Proteins; 2007 Feb; 66(2):272-8. PubMed ID: 17068812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.
    Zhao BM; Keasey SL; Tropea JE; Lountos GT; Dyas BK; Cherry S; Raran-Kurussi S; Waugh DS; Ulrich RG
    PLoS One; 2015; 10(8):e0134984. PubMed ID: 26302245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28.
    Ku B; Hong W; Keum CW; Kim M; Ryu H; Jeon D; Shin HC; Kim JH; Kim SJ; Ryu SE
    PLoS One; 2017; 12(11):e0187701. PubMed ID: 29121083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New aspects of the phosphatase VHZ revealed by a high-resolution structure with vanadate and substrate screening.
    Kuznetsov VI; Hengge AC; Johnson SJ
    Biochemistry; 2012 Dec; 51(49):9869-79. PubMed ID: 23145819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-specificity protein tyrosine phosphatase VHR down-regulates c-Jun N-terminal kinase (JNK).
    Todd JL; Rigas JD; Rafty LA; Denu JM
    Oncogene; 2002 Apr; 21(16):2573-83. PubMed ID: 11971192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase.
    Jeong DG; Yoon TS; Kim JH; Shim MY; Jung SK; Son JH; Ryu SE; Kim SJ
    J Mol Biol; 2006 Jul; 360(5):946-55. PubMed ID: 16806267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation.
    Liu X; Zhang CS; Lu C; Lin SC; Wu JW; Wang ZX
    Nat Commun; 2016 Mar; 7():10879. PubMed ID: 26988444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5.
    Zhang YY; Wu JW; Wang ZX
    Sci Signal; 2011 Dec; 4(204):ra88. PubMed ID: 22375048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Conserved Histidine and Serine in the HCXXXXXRS Motif of Human Dual-Specificity Phosphatase 5.
    Gupta A; Brahmbhatt J; Syrlybaeva R; Bodnar C; Bodnar N; Bongard R; Pokkuluri PR; Sem DS; Ramchandran R; Rathore R; Talipov MR
    J Chem Inf Model; 2019 Apr; 59(4):1563-1574. PubMed ID: 30835471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Insights into the Active Site Formation of DUSP22 in N-loop-containing Protein Tyrosine Phosphatases.
    Lai CH; Chang CC; Chuang HC; Tan TH; Lyu PC
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1.
    Shen Y; Luche R; Wei B; Gordon ML; Diltz CD; Tonks NK
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):13613-8. PubMed ID: 11717427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ.
    Alonso A; Burkhalter S; Sasin J; Tautz L; Bogetz J; Huynh H; Bremer MC; Holsinger LJ; Godzik A; Mustelin T
    J Biol Chem; 2004 Aug; 279(34):35768-74. PubMed ID: 15201283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New functional aspects of the atypical protein tyrosine phosphatase VHZ.
    Kuznetsov VI; Hengge AC
    Biochemistry; 2013 Nov; 52(45):8012-25. PubMed ID: 24073992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Drosophila DUSP puckered is phosphorylated by JNK and p38 in response to arsenite-induced oxidative stress.
    Karkali K; Panayotou G
    Biochem Biophys Res Commun; 2012 Feb; 418(2):301-6. PubMed ID: 22266315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of a novel dual-specificity phosphatase18 gene from human fetal brain.
    Wu Q; Gu S; Dai J; Dai J; Wang L; Li Y; Zeng L; Xu J; Ye X; Zhao W; Ji C; Xie Y; Mao Y
    Biochim Biophys Acta; 2003 Feb; 1625(3):296-304. PubMed ID: 12591617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7.
    Fleming Y; Armstrong CG; Morrice N; Paterson A; Goedert M; Cohen P
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):145-54. PubMed ID: 11062067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.