BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18245242)

  • 1. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature.
    Ramírez M; Ambrona J
    Appl Environ Microbiol; 2008 Apr; 74(7):2129-34. PubMed ID: 18245242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic wine yeast technology comes of age: is it time for transgenic wine?
    Cebollero E; Gonzalez-Ramos D; Tabera L; Gonzalez R
    Biotechnol Lett; 2007 Feb; 29(2):191-200. PubMed ID: 17120088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation.
    Ambrona J; Ramírez M
    Appl Environ Microbiol; 2007 Apr; 73(8):2486-90. PubMed ID: 17322328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of killer strains of Saccharomyces cerevisiae on wine fermentation.
    Pérez F; Ramírez M; Regodón JA
    Antonie Van Leeuwenhoek; 2001 Sep; 79(3-4):393-9. PubMed ID: 11816985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation.
    Puig S; Querol A; Barrio E; Pérez-Ortín JE
    Appl Environ Microbiol; 2000 May; 66(5):2057-61. PubMed ID: 10788381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae STR3 and yeast cystathionine β-lyase enzymes: The potential for engineering increased flavor release.
    Holt S; Cordente AG; Curtin C
    Bioeng Bugs; 2012; 3(3):178-80. PubMed ID: 22572787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodamine-pink as a genetic marker for yeast populations in wine fermentation.
    Ambrona J; Vinagre A; Maqueda M; Alvarez ML; Ramírez M
    J Agric Food Chem; 2006 Apr; 54(8):2977-84. PubMed ID: 16608218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of fermentation-relevant factors: A strategy to reduce ethanol in red wine by sequential culture of native yeasts.
    Maturano YP; Mestre MV; Kuchen B; Toro ME; Mercado LA; Vazquez F; Combina M
    Int J Food Microbiol; 2019 Jan; 289():40-48. PubMed ID: 30196180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of genetic engineering for improving brewing, wine-making and baking yeasts.
    Dequin S
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):577-88. PubMed ID: 11601604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic instability of heterozygous, hybrid, natural wine yeasts.
    Ramírez M; Vinagre A; Ambrona J; Molina F; Maqueda M; Rebollo JE
    Appl Environ Microbiol; 2004 Aug; 70(8):4686-91. PubMed ID: 15294803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-cost procedure for production of fresh autochthonous wine yeast.
    Maqueda M; Pérez-Nevado F; Regodón JA; Zamora E; Alvarez ML; Rebollo JE; Ramírez M
    J Ind Microbiol Biotechnol; 2011 Mar; 38(3):459-69. PubMed ID: 20683636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation.
    Kessi-Pérez EI; Molinet J; Martínez C
    Biol Res; 2020 Jan; 53(1):2. PubMed ID: 31918759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and killer behaviour of indigenous yeasts isolated from the fermentation vat surfaces in four Patagonian wineries.
    Sangorrín MP; Lopes CA; Giraudo MR; Caballero AC
    Int J Food Microbiol; 2007 Nov; 119(3):351-7. PubMed ID: 17531343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunosuppressive drug rapamycin restores sporulation competence in industrial yeasts.
    Nakazawa N; Niijima S; Tanaka Y; Ito T
    J Biosci Bioeng; 2012 Apr; 113(4):491-5. PubMed ID: 22197499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation.
    Domizio P; Romani C; Lencioni L; Comitini F; Gobbi M; Mannazzu I; Ciani M
    Int J Food Microbiol; 2011 Jun; 147(3):170-80. PubMed ID: 21531033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodiversity of Saccharomyces yeast strains from grape berries of wine-producing areas using starter commercial yeasts.
    Valero E; Cambon B; Schuller D; Casal M; Dequin S
    FEMS Yeast Res; 2007 Mar; 7(2):317-29. PubMed ID: 17040482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of yeast population during spontaneous alcoholic fermentation: effect of the age of the cellar and the practice of inoculation.
    Santamaría P; Garijo P; López R; Tenorio C; Rosa Gutiérrez A
    Int J Food Microbiol; 2005 Aug; 103(1):49-56. PubMed ID: 16084265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.
    Trabalzini L; Paffetti A; Ferro E; Scaloni A; Talamo F; Millucci L; Martelli P; Santucci A
    Ital J Biochem; 2003 Dec; 52(4):145-53. PubMed ID: 15141481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.