These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18245244)

  • 41. A Stable, Autonomously Replicating Plasmid Vector Containing Pichia pastoris Centromeric DNA.
    Nakamura Y; Nishi T; Noguchi R; Ito Y; Watanabe T; Nishiyama T; Aikawa S; Hasunuma T; Ishii J; Okubo Y; Kondo A
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chemosensory pathways, motility and development in Myxococcus xanthus.
    Zusman DR; Scott AE; Yang Z; Kirby JR
    Nat Rev Microbiol; 2007 Nov; 5(11):862-72. PubMed ID: 17922045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats.
    Viswanathan P; Murphy K; Julien B; Garza AG; Kroos L
    J Bacteriol; 2007 May; 189(10):3738-50. PubMed ID: 17369305
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector.
    Lee JH; Halgerson JS; Kim JH; O'Sullivan DJ
    Appl Environ Microbiol; 2007 Jul; 73(14):4417-24. PubMed ID: 17526779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus.
    Rodriguez AM; Spormann AM
    J Bacteriol; 1999 Jul; 181(14):4381-90. PubMed ID: 10400597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A gene involved in both protein secretion during growth and starvation-induced development encodes a subunit of the NADH:ubiquinone oxidoreductase in Myxococcus xanthus.
    Laval-Favre K; Letouvet-Pawlak B; Friedrich T; Alexandre J; Guespin-Michel JF
    Mol Microbiol; 1997 Mar; 23(5):1043-52. PubMed ID: 9076740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Initiation factor 2 of Myxococcus xanthus, a large version of prokaryotic translation initiation factor 2.
    Tiennault-Desbordes E; Cenatiempo Y; Laalami S
    J Bacteriol; 2001 Jan; 183(1):207-13. PubMed ID: 11114918
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus.
    Sun H; Shi W
    J Bacteriol; 2001 Aug; 183(16):4786-95. PubMed ID: 11466282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus.
    Campoy S; Fontes M; Padmanabhan S; Cortés P; Llagostera M; Barbé J
    Mol Microbiol; 2003 Aug; 49(3):769-81. PubMed ID: 12864858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development.
    Guo D; Bowden MG; Pershad R; Kaplan HB
    J Bacteriol; 1996 Mar; 178(6):1631-9. PubMed ID: 8626291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development.
    Plamann L; Li Y; Cantwell B; Mayor J
    J Bacteriol; 1995 Apr; 177(8):2014-20. PubMed ID: 7721694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioinformatic and Functional Characterization of Hsp70s in Myxococcus xanthus.
    Pan Z; Zhang Z; Zhuo L; Wan TY; Li YZ
    mSphere; 2021 May; 6(3):. PubMed ID: 34011688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus.
    Skotnicka D; Petters T; Heering J; Hoppert M; Kaever V; Søgaard-Andersen L
    J Bacteriol; 2016 Jan; 198(1):77-90. PubMed ID: 26124238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and characterization of the Myxococcus xanthus argE gene.
    Harris BZ; Singer M
    J Bacteriol; 1998 Dec; 180(23):6412-4. PubMed ID: 9829957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus.
    Yang YJ; Singh RP; Lan X; Zhang CS; Sheng DH; Li YQ
    Microb Cell Fact; 2019 Jul; 18(1):123. PubMed ID: 31291955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein purification, gene cloning and sequencing of an acidic endoprotease from Myxococcus xanthus DK101.
    Lucas N; Mazaud-Aujard C; Bremaud L; Cenatiempo Y; Julien R
    Eur J Biochem; 1994 Jun; 222(2):247-54. PubMed ID: 8020464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus.
    Yang YJ; Wang Y; Li ZF; Gong Y; Zhang P; Hu WC; Sheng DH; Li YZ
    Microb Cell Fact; 2017 Aug; 16(1):142. PubMed ID: 28814300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria.
    Ueki T; Inouye S
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):21-29. PubMed ID: 16791590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus.
    Ueki T; Inouye S
    Genes Cells; 1998 Jun; 3(6):371-85. PubMed ID: 9734783
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A DnaK homolog in Myxococcus xanthus is involved in social motility and fruiting body formation.
    Yang Z; Geng Y; Shi W
    J Bacteriol; 1998 Jan; 180(2):218-24. PubMed ID: 9440508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.