These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18245359)

  • 1. Dynamic regulation of single-stranded telomeres in Saccharomyces cerevisiae.
    Smith S; Banerjee S; Rilo R; Myung K
    Genetics; 2008 Feb; 178(2):693-701. PubMed ID: 18245359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.
    Phillips JA; Chan A; Paeschke K; Zakian VA
    PLoS Genet; 2015 Apr; 11(4):e1005186. PubMed ID: 25906395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants.
    Maringele L; Lydall D
    Genes Dev; 2002 Aug; 16(15):1919-33. PubMed ID: 12154123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomerase regulation by the Pif1 helicase: a length-dependent effect?
    Stinus S; Paeschke K; Chang M
    Curr Genet; 2018 Apr; 64(2):509-513. PubMed ID: 29052759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae.
    Pennaneach V; Putnam CD; Kolodner RD
    Mol Microbiol; 2006 Mar; 59(5):1357-68. PubMed ID: 16468981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase.
    Vega LR; Phillips JA; Thornton BR; Benanti JA; Onigbanjo MT; Toczyski DP; Zakian VA
    PLoS Genet; 2007 Jun; 3(6):e105. PubMed ID: 17590086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple pathways regulate 3' overhang generation at S. cerevisiae telomeres.
    Bonetti D; Martina M; Clerici M; Lucchini G; Longhese MP
    Mol Cell; 2009 Jul; 35(1):70-81. PubMed ID: 19595717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Biochemical Activities of the
    Nickens DG; Sausen CW; Bochman ML
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31142053
    [No Abstract]   [Full Text] [Related]  

  • 9. Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku.
    Gravel S; Wellinger RJ
    Mol Cell Biol; 2002 Apr; 22(7):2182-93. PubMed ID: 11884605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the regulation of telomere length on the type of subtelomeric repeat in the yeast Saccharomyces cerevisiae.
    Craven RJ; Petes TD
    Genetics; 1999 Aug; 152(4):1531-41. PubMed ID: 10430581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tel1 and Rif2 oppositely regulate telomere protection at uncapped telomeres in Saccharomyces cerevisiae.
    Zhang LL; Wu Z; Zhou JQ
    J Genet Genomics; 2018 Sep; 45(9):467-476. PubMed ID: 30279093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telomerase is essential to alleviate pif1-induced replication stress at telomeres.
    Chang M; Luke B; Kraft C; Li Z; Peter M; Lingner J; Rothstein R
    Genetics; 2009 Nov; 183(3):779-91. PubMed ID: 19704012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres.
    Strecker J; Stinus S; Caballero MP; Szilard RK; Chang M; Durocher D
    Elife; 2017 Aug; 6():. PubMed ID: 28826474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interplay between multiple sirtuins promotes completion of DNA replication in cells with short telomeres.
    Simoneau A; Ricard É; Wurtele H
    PLoS Genet; 2018 Apr; 14(4):e1007356. PubMed ID: 29659581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPA provides checkpoint-independent cell cycle arrest and prevents recombination at uncapped telomeres of Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    DNA Repair (Amst); 2013 Mar; 12(3):212-26. PubMed ID: 23312805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction.
    Booth C; Griffith E; Brady G; Lydall D
    Nucleic Acids Res; 2001 Nov; 29(21):4414-22. PubMed ID: 11691929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Mph1 helicase can promote telomere uncapping and premature senescence in budding yeast.
    Luke-Glaser S; Luke B
    PLoS One; 2012; 7(7):e42028. PubMed ID: 22848695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    Mol Cell Biol; 2003 Jun; 23(11):3721-34. PubMed ID: 12748277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA.
    Hardy J; Churikov D; Géli V; Simon MN
    Nat Commun; 2014 Sep; 5():5004. PubMed ID: 25254351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends.
    Li JR; Yu TY; Chien IC; Lu CY; Lin JJ; Li HW
    Nucleic Acids Res; 2014 Jul; 42(13):8527-36. PubMed ID: 24981509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.