BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18245385)

  • 21. In vitro studies of archaeal translational initiation.
    Benelli D; Londei P
    Methods Enzymol; 2007; 430():79-109. PubMed ID: 17913636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The third structural switch in the archaeal translation initiation factor 2 (aIF2) molecule and its possible role in the initiation of GTP hydrolysis and the removal of aIF2 from the ribosome.
    Nikonov O; Kravchenko O; Nevskaya N; Stolboushkina E; Garber M; Nikonov S
    Acta Crystallogr D Struct Biol; 2019 Apr; 75(Pt 4):392-399. PubMed ID: 30988256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element.
    Thompson SR; Gulyas KD; Sarnow P
    Proc Natl Acad Sci U S A; 2001 Nov; 98(23):12972-7. PubMed ID: 11687653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antisense regulation by transposon-derived RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Märtens B; Manoharadas S; Hasenöhrl D; Manica A; Bläsi U
    EMBO Rep; 2013 Jun; 14(6):527-33. PubMed ID: 23579342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ABC50 interacts with eukaryotic initiation factor 2 and associates with the ribosome in an ATP-dependent manner.
    Tyzack JK; Wang X; Belsham GJ; Proud CG
    J Biol Chem; 2000 Nov; 275(44):34131-9. PubMed ID: 10931828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation.
    Kapp LD; Kolitz SE; Lorsch JR
    RNA; 2006 May; 12(5):751-64. PubMed ID: 16565414
    [TBL] [Abstract][Full Text] [Related]  

  • 27. tRNA binding properties of eukaryotic translation initiation factor 2 from Encephalitozoon cuniculi.
    Naveau M; Lazennec-Schurdevin C; Panvert M; Mechulam Y; Schmitt E
    Biochemistry; 2010 Oct; 49(40):8680-8. PubMed ID: 20822097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2.
    Terenin IM; Dmitriev SE; Andreev DE; Shatsky IN
    Nat Struct Mol Biol; 2008 Aug; 15(8):836-41. PubMed ID: 18604219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water clusters in the nucleotide-binding pocket of the protein aIF2γ from the archaeon Sulfolobus solfataricus: Proton transmission.
    Nikonov O; Kravchenko O; Arkhipova V; Stolboushkina E; Nikonov S; Garber M
    Biochimie; 2016 Feb; 121():197-203. PubMed ID: 26700147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved sequences in the beta subunit of archaeal and eukaryal translation initiation factor 2 (eIF2), absent from eIF5, mediate interaction with eIF2gamma.
    Thompson GM; Pacheco E; Melo EO; Castilho BA
    Biochem J; 2000 May; 347 Pt 3(Pt 3):703-9. PubMed ID: 10769173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.
    Simonetti A; Brito Querido J; Myasnikov AG; Mancera-Martinez E; Renaud A; Kuhn L; Hashem Y
    Mol Cell; 2016 Jul; 63(2):206-217. PubMed ID: 27373335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.
    Ji H; Fraser CS; Yu Y; Leary J; Doudna JA
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):16990-5. PubMed ID: 15563596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Minor secondary-structure variation in the 5'-untranslated region of the beta-globin mRNA changes the concentration requirements for eIF2].
    Dmitriev SE; Terenin IM; Rubtsova MP; Shatskiĭ IN
    Mol Biol (Mosk); 2003; 37(3):494-503. PubMed ID: 12815957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
    Lubelska JM; Jonuscheit M; Schleper C; Albers SV; Driessen AJ
    Extremophiles; 2006 Oct; 10(5):383-91. PubMed ID: 16604273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus.
    Zebec Z; Manica A; Zhang J; White MF; Schleper C
    Nucleic Acids Res; 2014 Apr; 42(8):5280-8. PubMed ID: 24603867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The RadA Recombinase and Paralogs of the Hyperthermophilic Archaeon Sulfolobus solfataricus.
    Rolfsmeier ML; Haseltine CA
    Methods Enzymol; 2018; 600():255-284. PubMed ID: 29458762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The joining of ribosomal subunits in eukaryotes requires eIF5B.
    Pestova TV; Lomakin IB; Lee JH; Choi SK; Dever TE; Hellen CU
    Nature; 2000 Jan; 403(6767):332-5. PubMed ID: 10659855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry.
    Pestova TV; Hellen CU; Shatsky IN
    Mol Cell Biol; 1996 Dec; 16(12):6859-69. PubMed ID: 8943341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
    Pestova TV; de Breyne S; Pisarev AV; Abaeva IS; Hellen CU
    EMBO J; 2008 Apr; 27(7):1060-72. PubMed ID: 18337746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function and ribosomal localization of aIF6, a translational regulator shared by archaea and eukarya.
    Benelli D; Marzi S; Mancone C; Alonzi T; la Teana A; Londei P
    Nucleic Acids Res; 2009 Jan; 37(1):256-67. PubMed ID: 19036786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.