BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18245385)

  • 41. The role of cis-acting sequences governing catabolite repression control of lacS expression in the archaeon Sulfolobus solfataricus.
    Hoang V; Bini E; Dixit V; Drozda M; Blum P
    Genetics; 2004 Aug; 167(4):1563-72. PubMed ID: 15342498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Sulfolobus solfataricus GINS Complex Stimulates DNA Binding and Processive DNA Unwinding by Minichromosome Maintenance Helicase.
    Lang S; Huang L
    J Bacteriol; 2015 Nov; 197(21):3409-20. PubMed ID: 26283767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2.
    Kapp LD; Lorsch JR
    J Mol Biol; 2004 Jan; 335(4):923-36. PubMed ID: 14698289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon.
    Alone PV; Dever TE
    J Biol Chem; 2006 May; 281(18):12636-44. PubMed ID: 16522633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The chromosome replication machinery of the archaeon Sulfolobus solfataricus.
    Duggin IG; Bell SD
    J Biol Chem; 2006 Jun; 281(22):15029-32. PubMed ID: 16467299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of translation initiation by amino acids in eukaryotic cells.
    Kimball SR
    Prog Mol Subcell Biol; 2001; 26():155-84. PubMed ID: 11575165
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation.
    Toribio R; Díaz-López I; Boskovic J; Ventoso I
    Nucleic Acids Res; 2016 May; 44(9):4368-80. PubMed ID: 26984530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-canonical initiation factors modulate repeat-associated non-AUG translation.
    Green KM; Miller SL; Malik I; Todd PK
    Hum Mol Genet; 2022 Aug; 31(15):2521-2534. PubMed ID: 35220421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal-packing analysis of translation initiation factor 2 reveals new details of its function.
    Nikonov OS; Nikonova EY; Lekontseva NV; Nevskaya NA; Nikonov SV
    Acta Crystallogr D Struct Biol; 2024 Jul; 80(Pt 7):464-473. PubMed ID: 38860981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation.
    Algire MA; Maag D; Lorsch JR
    Mol Cell; 2005 Oct; 20(2):251-62. PubMed ID: 16246727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation.
    Grill S; Gualerzi CO; Londei P; Bläsi U
    EMBO J; 2000 Aug; 19(15):4101-10. PubMed ID: 10921890
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo.
    Olsen DS; Savner EM; Mathew A; Zhang F; Krishnamoorthy T; Phan L; Hinnebusch AG
    EMBO J; 2003 Jan; 22(2):193-204. PubMed ID: 12514125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex.
    Kang T; Kwon NH; Lee JY; Park MC; Kang E; Kim HH; Kang TJ; Kim S
    J Mol Biol; 2012 Nov; 423(4):475-81. PubMed ID: 22867704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New insights into the interactions of the translation initiation factor 2 from archaea with guanine nucleotides and initiator tRNA.
    Nikonov O; Stolboushkina E; Nikulin A; Hasenöhrl D; Bläsi U; Manstein DJ; Fedorov R; Garber M; Nikonov S
    J Mol Biol; 2007 Oct; 373(2):328-36. PubMed ID: 17825838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2.
    Das S; Maiti T; Das K; Maitra U
    J Biol Chem; 1997 Dec; 272(50):31712-8. PubMed ID: 9395514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo.
    Valásek L; Nielsen KH; Hinnebusch AG
    EMBO J; 2002 Nov; 21(21):5886-98. PubMed ID: 12411506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A single-base resolution map of an archaeal transcriptome.
    Wurtzel O; Sapra R; Chen F; Zhu Y; Simmons BA; Sorek R
    Genome Res; 2010 Jan; 20(1):133-41. PubMed ID: 19884261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and crystallization of heterotrimeric translation initiation factor 2 from Sulfolobus solfataricus.
    Stolboushkina EA; Nikonov OS; Garber MB
    Biochemistry (Mosc); 2009 Jan; 74(1):54-60. PubMed ID: 19232049
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation.
    He ZG; Feng Y; Wang J; Jiang PX
    Arch Biochem Biophys; 2008 Mar; 471(2):176-83. PubMed ID: 18237540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi.
    Hui DJ; Bhasker CR; Merrick WC; Sen GC
    J Biol Chem; 2003 Oct; 278(41):39477-82. PubMed ID: 12885778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.