These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18245598)

  • 1. Instability-associated changes in contact stress and contact stress rates near a step-off incongruity.
    McKinley TO; Tochigi Y; Rudert MJ; Brown TD
    J Bone Joint Surg Am; 2008 Feb; 90(2):375-83. PubMed ID: 18245598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of incongruity and instability on contact stress directional gradients in human cadaveric ankles.
    McKinley TO; Tochigi Y; Rudert MJ; Brown TD
    Osteoarthritis Cartilage; 2008 Nov; 16(11):1363-9. PubMed ID: 18511308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incongruity-dependent changes of contact stress rates in human cadaveric ankles.
    McKinley TO; Rudert MJ; Tochigi Y; Pedersen DR; Koos DC; Baer TE; Brown TD
    J Orthop Trauma; 2006; 20(10):732-8. PubMed ID: 17106387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle incongruity.
    Tochigi Y; Rudert MJ; McKinley TO; Pedersen DR; Brown TD
    J Orthop Res; 2008 Sep; 26(9):1186-93. PubMed ID: 18404655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stance-phase aggregate contact stress and contact stress gradient changes resulting from articular surface stepoffs in human cadaveric ankles.
    McKinley TO; McKinley T; Rudert MJ; Koos DC; Pedersen DR; Baer TE; Tochigi Y; Brown TD
    Osteoarthritis Cartilage; 2006 Feb; 14(2):131-8. PubMed ID: 16289734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact stress transients during functional loading of ankle stepoff incongruities.
    McKinley TO; Rudert MJ; Koos DC; Pedersen DR; Baer TE; Tochigi Y; Brown TD
    J Biomech; 2006; 39(4):617-26. PubMed ID: 15927189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic and contact stress analysis of posterior malleolus fractures of the ankle.
    Fitzpatrick DC; Otto JK; McKinley TO; Marsh JL; Brown TD
    J Orthop Trauma; 2004; 18(5):271-8. PubMed ID: 15105748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incongruity versus instability in the etiology of posttraumatic arthritis.
    McKinley TO; Rudert MJ; Koos DC; Brown TD
    Clin Orthop Relat Res; 2004 Jun; (423):44-51. PubMed ID: 15232425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of arthrometer for ankle instability: a cadaveric study.
    Nauck T; Lohrer H; Gollhofer A
    Foot Ankle Int; 2010 Jul; 31(7):612-8. PubMed ID: 20663429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of loading on tibiotalar alignment in cadaver ankles.
    Michelson JD; Clarke HJ; Jinnah RH
    Foot Ankle; 1990 Apr; 10(5):280-4. PubMed ID: 2111269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of reconstruction techniques in simulated lateral ankle ligament injury.
    Hollis JM; Blasier RD; Flahiff CM; Hofmann OE
    Am J Sports Med; 1995; 23(6):678-82. PubMed ID: 8600733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiographic indicators of ankle instability: changes with plantarflexion.
    Kragh JF; Ward JA
    Foot Ankle Int; 2006 Jan; 27(1):23-8. PubMed ID: 16442025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanical study on repairing distal tibiofibular syndesmosis injuries with artificial ligaments].
    Wu Z; Wang B; Cao Y; Zhao Y; Wang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Oct; 28(10):1217-20. PubMed ID: 25591295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite element exploration of cartilage stress near an articular incongruity during unstable motion.
    Goreham-Voss CM; McKinley TO; Brown TD
    J Biomech; 2007; 40(15):3438-47. PubMed ID: 17604036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model.
    Michelson JD; Hamel AJ; Buczek FL; Sharkey NA
    J Bone Joint Surg Am; 2002 Nov; 84(11):2029-38. PubMed ID: 12429766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of implantation accuracy on ankle contact mechanics with a metallic focal resurfacing implant.
    Anderson DD; Tochigi Y; Rudert MJ; Vaseenon T; Brown TD; Amendola A
    J Bone Joint Surg Am; 2010 Jun; 92(6):1490-500. PubMed ID: 20516325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of modified Broström and Evans procedures in simulated lateral ankle injury.
    Fujii T; Kitaoka HB; Watanabe K; Luo ZP; An KN
    Med Sci Sports Exerc; 2006 Jun; 38(6):1025-31. PubMed ID: 16775540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of articular surface geometry to ankle stabilization.
    Tochigi Y; Rudert MJ; Saltzman CL; Amendola A; Brown TD
    J Bone Joint Surg Am; 2006 Dec; 88(12):2704-13. PubMed ID: 17142421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle Joint Contact Loads and Displacement With Progressive Syndesmotic Injury.
    Hunt KJ; Goeb Y; Behn AW; Criswell B; Chou L
    Foot Ankle Int; 2015 Sep; 36(9):1095-103. PubMed ID: 25948693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative measurement of ankle passive flexibility using an arthrometer on sprained ankles.
    Liu W; Siegler S; Techner L
    Clin Biomech (Bristol, Avon); 2001 Mar; 16(3):237-44. PubMed ID: 11240059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.