These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 18245629)

  • 1. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets.
    Adamo SA; Roberts JL; Easy RH; Ross NW
    J Exp Biol; 2008 Feb; 211(Pt 4):531-8. PubMed ID: 18245629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunosuppression induced by entomopathogens is rescued by addition of apolipophorin III in the diamondback moth, Plutella xylostella.
    Son Y; Kim Y
    J Invertebr Pathol; 2011 Feb; 106(2):217-22. PubMed ID: 20937282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apolipophorin III: role model apolipoprotein.
    Weers PM; Ryan RO
    Insect Biochem Mol Biol; 2006 Apr; 36(4):231-40. PubMed ID: 16551537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus.
    Konuma T; Tsukamoto Y; Nagasawa H; Nagata S
    PLoS One; 2016; 11(5):e0154841. PubMed ID: 27144650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis).
    Adamo SA
    Brain Behav Immun; 2010 Feb; 24(2):194-200. PubMed ID: 19679179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating disease resistance in insects: phenoloxidase and lysozyme-like activity and disease resistance in the cricket Gryllus texensis.
    Adamo SA
    J Insect Physiol; 2004; 50(2-3):209-16. PubMed ID: 15019523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport.
    Van der Horst DJ; Rodenburg KW
    J Insect Physiol; 2010 Aug; 56(8):844-53. PubMed ID: 20206629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonality influences cuticle melanization and immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in insects.
    Fedorka KM; Copeland EK; Winterhalter WE
    J Exp Biol; 2013 Nov; 216(Pt 21):4005-10. PubMed ID: 23868839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the insect immune system to three different immune challenges.
    Charles HM; Killian KA
    J Insect Physiol; 2015 Oct; 81():97-108. PubMed ID: 26164746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis.
    Adamo SA; Lovett MM
    J Exp Biol; 2011 Jun; 214(Pt 12):1997-2004. PubMed ID: 21613515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical basis of specialization for dispersal vs. reproduction in a wing-polymorphic cricket: morph-specific metabolism of amino acids.
    Zhao Z; Zera AJ
    J Insect Physiol; 2006 Jun; 52(6):646-58. PubMed ID: 16643945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipophorin III from Hyphantria cunea shows different anti-oxidant ability against LDL oxidation in the lipid-free and lipid-bound state.
    Seo SJ; Park KH; Cho KH
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Dec; 151(4):433-9. PubMed ID: 18822383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent changes of fat body stores and the regulation of fat body lipid synthesis and mobilisation by adipokinetic hormone in the last larval instar of the cricket, Gryllus bimaculatus.
    Anand AN; Lorenz MW
    J Insect Physiol; 2008; 54(10-11):1404-12. PubMed ID: 18761344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular immunosenescence in adult male crickets, Gryllus assimilis.
    Park Y; Kim Y; Stanley D
    Arch Insect Biochem Physiol; 2011 Apr; 76(4):185-94. PubMed ID: 21254201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved features of chronic stress across phyla: the effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis.
    Adamo SA; Baker JL
    Horm Behav; 2011 Nov; 60(5):478-83. PubMed ID: 21824475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female Gryllus bimaculatus.
    Lorenz MW
    J Insect Physiol; 2007 Aug; 53(8):819-32. PubMed ID: 17490675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-off between immune stimulation and expression of storage protein genes.
    Lourenço AP; Martins JR; Bitondi MM; Simões ZL
    Arch Insect Biochem Physiol; 2009 Jun; 71(2):70-87. PubMed ID: 19309002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism.
    Oliveira GA; Baptista DL; Guimarães-Motta H; Almeida IC; Masuda H; Atella GC
    Arch Insect Biochem Physiol; 2006 Aug; 62(4):164-75. PubMed ID: 16933278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in immune effort of male field crickets infested with mobile parasitoid larvae.
    Bailey NW; Zuk M
    J Insect Physiol; 2008 Jan; 54(1):96-104. PubMed ID: 17910888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermediary metabolism and life-history trade-offs: differential metabolism of amino acids underlies the dispersal-reproduction trade-off in a wing-polymorphic cricket.
    Zera AJ; Zhao Z
    Am Nat; 2006 Jun; 167(6):889-900. PubMed ID: 16609924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.