These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 18246469)
1. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: lessons learned from gene transfer studies in different mouse models. Zannis VI; Koukos G; Drosatos K; Vezeridis A; Zanni EE; Kypreos KE; Chroni A Ann Med; 2008; 40 Suppl 1():14-28. PubMed ID: 18246469 [TBL] [Abstract][Full Text] [Related]
2. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Kypreos KE; Zannis VI Biochem J; 2007 Apr; 403(2):359-67. PubMed ID: 17206937 [TBL] [Abstract][Full Text] [Related]
3. The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo. Chroni A; Koukos G; Duka A; Zannis VI Biochemistry; 2007 May; 46(19):5697-708. PubMed ID: 17447731 [TBL] [Abstract][Full Text] [Related]
4. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726 [TBL] [Abstract][Full Text] [Related]
5. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Chroni A; Kan HY; Kypreos KE; Gorshkova IN; Shkodrani A; Zannis VI Biochemistry; 2004 Aug; 43(32):10442-57. PubMed ID: 15301543 [TBL] [Abstract][Full Text] [Related]
6. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Zannis VI; Chroni A; Kypreos KE; Kan HY; Cesar TB; Zanni EE; Kardassis D Curr Opin Lipidol; 2004 Apr; 15(2):151-66. PubMed ID: 15017358 [TBL] [Abstract][Full Text] [Related]
7. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. Zannis VI; Chroni A; Krieger M J Mol Med (Berl); 2006 Apr; 84(4):276-94. PubMed ID: 16501936 [TBL] [Abstract][Full Text] [Related]
8. ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT. Duka A; Fotakis P; Georgiadou D; Kateifides A; Tzavlaki K; von Eckardstein L; Stratikos E; Kardassis D; Zannis VI J Lipid Res; 2013 Jan; 54(1):107-15. PubMed ID: 23132909 [TBL] [Abstract][Full Text] [Related]
9. Domains of apoE4 required for the biogenesis of apoE-containing HDL. Vezeridis AM; Chroni A; Zannis VI Ann Med; 2011 Jun; 43(4):302-11. PubMed ID: 21604997 [TBL] [Abstract][Full Text] [Related]
10. LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochemistry; 2007 Sep; 46(37):10713-21. PubMed ID: 17711302 [TBL] [Abstract][Full Text] [Related]
11. The aminoterminal 1-185 domain of human apolipoprotein E suffices for the de novo biogenesis of apoE-containing HDL-like particles in apoA-I deficient mice. Petropoulou PA; Gantz DL; Wang Y; Rensen PC; Kypreos KE Atherosclerosis; 2011 Nov; 219(1):116-23. PubMed ID: 21802082 [TBL] [Abstract][Full Text] [Related]
12. Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice. Chroni A; Kan HY; Shkodrani A; Liu T; Zannis VI Biochemistry; 2005 Mar; 44(10):4108-17. PubMed ID: 15751988 [TBL] [Abstract][Full Text] [Related]
13. Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders. Daniil G; Phedonos AA; Holleboom AG; Motazacker MM; Argyri L; Kuivenhoven JA; Chroni A Clin Chim Acta; 2011 Jun; 412(13-14):1213-20. PubMed ID: 21420943 [TBL] [Abstract][Full Text] [Related]
14. High density lipoprotein structure-function and role in reverse cholesterol transport. Lund-Katz S; Phillips MC Subcell Biochem; 2010; 51():183-227. PubMed ID: 20213545 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Natural LCAT Mutations on the Biogenesis of HDL. Fotakis P; Kuivenhoven JA; Dafnis E; Kardassis D; Zannis VI Biochemistry; 2015 Jun; 54(21):3348-59. PubMed ID: 25948084 [TBL] [Abstract][Full Text] [Related]
16. Significance of the hydrophobic residues 225-230 of apoA-I for the biogenesis of HDL. Fotakis P; Tiniakou I; Kateifides AK; Gkolfinopoulou C; Chroni A; Stratikos E; Zannis VI; Kardassis D J Lipid Res; 2013 Dec; 54(12):3293-302. PubMed ID: 24123812 [TBL] [Abstract][Full Text] [Related]
17. Simvastatin reduces atherogenesis and promotes the expression of hepatic genes associated with reverse cholesterol transport in apoE-knockout mice fed high-fat diet. Song G; Liu J; Zhao Z; Yu Y; Tian H; Yao S; Li G; Qin S Lipids Health Dis; 2011 Jan; 10():8. PubMed ID: 21241519 [TBL] [Abstract][Full Text] [Related]
18. Role of the hydrophobic and charged residues in the 218-226 region of apoA-I in the biogenesis of HDL. Fotakis P; Kateifides AK; Gkolfinopoulou C; Georgiadou D; Beck M; Gründler K; Chroni A; Stratikos E; Kardassis D; Zannis VI J Lipid Res; 2013 Dec; 54(12):3281-92. PubMed ID: 23990662 [TBL] [Abstract][Full Text] [Related]
19. ABCA1 promotes the de novo biogenesis of apolipoprotein CIII-containing HDL particles in vivo and modulates the severity of apolipoprotein CIII-induced hypertriglyceridemia. Kypreos KE Biochemistry; 2008 Sep; 47(39):10491-502. PubMed ID: 18767813 [TBL] [Abstract][Full Text] [Related]
20. Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression. Thorngate FE; Yancey PG; Kellner-Weibel G; Rudel LL; Rothblat GH; Williams DL J Lipid Res; 2003 Dec; 44(12):2331-8. PubMed ID: 12951361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]