These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Role of Ca2+-dependent Cl- current on delayed afterdepolarizations. A simulation study. Gomis-Tena J; Saiz J Ann Biomed Eng; 2008 May; 36(5):752-61. PubMed ID: 18274905 [TBL] [Abstract][Full Text] [Related]
6. Microstructure-based Monte Carlo simulation of Ca2+ dynamics evoking cardiac calcium channel inactivation. Kawazu T; Murakami S; Adachi-Akahane S; Findlay I; Ait-Haddou R; Kurachi Y; Nomura T J Physiol Sci; 2008 Dec; 58(7):471-80. PubMed ID: 18928642 [TBL] [Abstract][Full Text] [Related]
7. Effects of rapid and slow potassium repolarization currents and calcium dynamics on hysteresis in restitution of action potential duration. Wu R; Patwardhan A J Electrocardiol; 2007 Apr; 40(2):188-99. PubMed ID: 16895773 [TBL] [Abstract][Full Text] [Related]
8. Coupled dynamics of voltage and calcium in paced cardiac cells. Shiferaw Y; Sato D; Karma A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021903. PubMed ID: 15783348 [TBL] [Abstract][Full Text] [Related]
9. Macroscopic consequences of calcium signaling in microdomains: a first-passage-time approach. Rovetti R; Das KK; Garfinkel A; Shiferaw Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051920. PubMed ID: 18233700 [TBL] [Abstract][Full Text] [Related]
10. Role of intracellular calcium dynamics in the short-term memory in CVM model: a simulation study. Mei X; Wang J; Mei JS; Zhang H; Zhang ZX Comput Biol Med; 2011 Apr; 41(4):206-10. PubMed ID: 21353669 [TBL] [Abstract][Full Text] [Related]
12. EAD and DAD mechanisms analyzed by developing a new human ventricular cell model. Asakura K; Cha CY; Yamaoka H; Horikawa Y; Memida H; Powell T; Amano A; Noma A Prog Biophys Mol Biol; 2014 Sep; 116(1):11-24. PubMed ID: 25192800 [TBL] [Abstract][Full Text] [Related]
13. Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Youm JB; Han J; Kim N; Zhang YH; Kim E; Joo H; Hun Leem C; Joon Kim S; Cha KA; Earm YE Prog Biophys Mol Biol; 2006; 90(1-3):186-206. PubMed ID: 16043213 [TBL] [Abstract][Full Text] [Related]
15. Modulation of cardiac Na(+) and Ca(2+) currents by CaM and CaMKII. Wagner S; Maier LS J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S26-S33. PubMed ID: 16686679 [TBL] [Abstract][Full Text] [Related]
16. Intracellular Ca(2+) concentration and rate adaptation of the cardiac action potential. Carmeliet E Cell Calcium; 2004 Jun; 35(6):557-73. PubMed ID: 15110146 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms underlying the formation and dynamics of subcellular calcium alternans in the intact rat heart. Aistrup GL; Shiferaw Y; Kapur S; Kadish AH; Wasserstrom JA Circ Res; 2009 Mar; 104(5):639-49. PubMed ID: 19150887 [TBL] [Abstract][Full Text] [Related]
18. A two-current model for the dynamics of cardiac membrane. Mitchell CC; Schaeffer DG Bull Math Biol; 2003 Sep; 65(5):767-93. PubMed ID: 12909250 [TBL] [Abstract][Full Text] [Related]
19. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application. Raman V; Pollard AE; Fast VG Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687 [TBL] [Abstract][Full Text] [Related]
20. Calcium homeostasis and signaling in yeast cells and cardiac myocytes. Cui J; Kaandorp JA; Sloot PM; Lloyd CM; Filatov MV FEMS Yeast Res; 2009 Dec; 9(8):1137-47. PubMed ID: 19678847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]